Hydrogels Containing the Ferri/Ferrocyanide Redox Couple and Ionic Liquids for Thermocells
Matthew Russo A , Holly Warren B , Geoffrey M. Spinks B , Douglas R. MacFarlane C and Jennifer M. Pringle A DA Deakin University, Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
B ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials (AIIM) Facility, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia.
C School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.
D Corresponding author. Email: jenny.pringle@deakin.edu.au
Australian Journal of Chemistry 72(2) 112-121 https://doi.org/10.1071/CH18395
Submitted: 12 August 2018 Accepted: 1 November 2018 Published: 29 November 2018
Abstract
Thermoelectrochemical cells are a promising new technology for harvesting low-grade waste heat. The operation of these cells relies on a redox couple within an electrolyte, which is most commonly water-based, and improvement of these materials is a key aspect of the advancement of this technology. Here, we report the gelation of aqueous electrolytes containing the K3Fe(CN)6/K4Fe(CN)6 redox couple using a range of different polymers, including polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (Cmc), polyacrylamide (PAAm), and two commercial polyurethane-based polymers: HydroMed D640 and HydroSlip C. These polymers produce quasi-solid-state electrolytes with sufficient mechanical properties to prevent leakage, and allow improved device flexibility and safety. Furthermore, the incorporation of various ionic liquids within the optimized hydrogel network is investigated as a route to enhance the electrochemical and mechanical properties and thermal energy harvesting performance of the hydrogels.
References
[1] C. B. Vining, Nat. Mater. 2009, 8, 83.| Crossref | GoogleScholarGoogle Scholar |
[2] M. S. Romano, J. M. Razal, D. Antiohos, G. Wallace, J. Chen, J. Nanosci. Nanotechnol. 2015, 15, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. Quickenden, Y. Mua, J. Electrochem. Soc. 1995, 142, 3985.
| Crossref | GoogleScholarGoogle Scholar |
[4] B. Burrows, J. Electrochem. Soc. 1976, 123, 154.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Dupont, D. MacFarlane, J. Pringle, Chem. Commun. 2017, 6288.
| Crossref | GoogleScholarGoogle Scholar |
[6] T. I. Quickenden, C. F. Vernon, Sol. Energy 1986, 36, 63.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Gunawan, C.-H. Lin, D. A. Buttry, V. Mujica, R. A. Taylor, R. S. Prasher, P. E. Phelan, Nanoscale Microscale Thermophys. Eng. 2013, 17, 304.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. S. Romano, S. Gambhir, J. M. Razal, A. Gestos, G. G. Wallace, J. Chen, J. Therm. Anal. Calorim. 2012, 109, 1229.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. F. Salazar, S. Kumar, B. A. Cola, J. Electrochem. Soc. 2012, 159, B483.
| Crossref | GoogleScholarGoogle Scholar |
[10] T. J. Kang, S. Fang, M. E. Kozlov, C. S. Haines, N. Li, Y. H. Kim, Y. Chen, R. H. Baughman, Adv. Funct. Mater. 2012, 22, 477.
| Crossref | GoogleScholarGoogle Scholar |
[11] R. Hu, B. A. Cola, N. Haram, J. N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M. E. dela Cruz, J. P. Ferraris, A. A. Zakhidov, R. H. Baughman, Nano Lett. 2010, 10, 838.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Energy Environ. Sci. 2013, 6, 2639.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. A. Lazar, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Phys. Chem. Chem. Phys. 2016, 18, 1404.
| Crossref | GoogleScholarGoogle Scholar |
[14] K.-T. Lee, N.-L. Wu, J. Power Sources 2008, 179, 430.
| Crossref | GoogleScholarGoogle Scholar |
[15] T. J. Trivedi, D. Srivastava, R. D. Rogers, A. Kumar, Green Chem. 2012, 14, 2831.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. Vidinha, N. M. T. Lourenco, C. Pinheiro, A. R. Bras, T. Carvalho, T. Santos-Silva, A. Mukhopadhyay, M. J. Romão, J. Parola, M. Dionisio, J. M. S. Cabral, C. A. M. Afonso, S. Barreiros, Chem. Commun. 2008, 5842.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. Prasad, Y. Kaneko, J.-i. Kadokawa, Macromol. Biosci. 2009, 9, 376.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Wu, J. J. Black, L. Aldous, Electrochim. Acta 2017, 225, 482.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng, J. Zhou, Angew. Chem. 2016, 128, 12229.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Kuzminskii, V. Zasukha, G. Kuzminskaya, J. Power Sources 1994, 52, 231.
| Crossref | GoogleScholarGoogle Scholar |
[21] E. Helfand, J. G. Kirkwood, J. Chem. Phys. 1960, 32, 857.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. T. Hupp, M. J. Weaver, Inorg. Chem. 1984, 23, 3639.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. M. Hassan, N. A. Peppas, J. Appl. Polym. Sci. 2000, 76, 2075.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. Jin, G. W. Greene, D. R. MacFarlane, J. M. Pringle, ACS Energy Lett. 2016, 1, 654.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y. Saito, H. Kataoka, C. Capiglia, H. Yamamoto, J. Phys. Chem. B 2000, 104, 2189.
| Crossref | GoogleScholarGoogle Scholar |
[26] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, Chem. Commun. 2001, 1430.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. Taheri, D. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, ChemSusChem 2018, 11, 2788.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, Sustainable Energy Fuels 2018, 2, 1806.
| Crossref | GoogleScholarGoogle Scholar |