Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Protic Ionic Liquids Based on Oligomeric Anions [(HSO4)(H2SO4)x] (x = 0, 1, or 2) for a Clean ϵ-Caprolactam Synthesis*

Karolina Matuszek A , Alina Brzeczek-Szafran B , Dominika Kobus B , Douglas R. MacFarlane A D , Małgorzata Swadźba-Kwaśny C and Anna Chrobok B D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Department of Organic Chemical Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.

C The QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast, BT9 5AG, UK.

D Corresponding authors. Email: douglas.macfarlane@monash.edu; anna.chrobok@polsl.pl

Australian Journal of Chemistry 72(2) 130-138 https://doi.org/10.1071/CH18384
Submitted: 3 August 2018  Accepted: 27 November 2018   Published: 9 January 2019

Abstract

Inexpensive Brønsted acidic ionic liquids, suitable for industrial-scale catalysis, are reported as reaction media and catalysts for the Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam. A family of protic ionic liquids was synthesised from nitrogen bases (1-methylimidazole, N,N,N-triethylamine, N-methylpyrrolidine, 2-picoline) and sulfuric acid by proton transfer in a simple, inexpensive, solvent-free, one-step process. The density, viscosity, conductivity, and ionicity of the synthesised ionic liquids were determined. Variation in the molar ratio of sulfuric acid (χH2SO4 = 0.67 and 0.75) was used to tune the acidity of these protic ionic liquids, which showed extremely high catalytic activity in the Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam. Both the structure of the cation and the sulfuric acid molar ratio strongly affect the rearrangement of cyclohexanone oxime. The most active ionic liquid, based on the 1-metyhylimidazolium cation, χH2SO4 = 0.75, afforded high conversion of oxime combined with very good selectivity under mild conditions (110°C, 15 min). The product could be extracted from the reaction mixture, eliminating the need for the neutralisation step that exists in conventional processes. The combination of affordable catalyst and process advantages leads to a greener alternative, competitive against existent industrial applications.


References

[1]  Tecnon OrbiChem Report 2016. Available at: https://www.orbichem.com/ (accessed 30 November 2016)

[2]  J. F. Ritz, H. Kieczka, W. C. Moran, in Ullmann’s Encyclopedia of Industrial Chemistry 2011, pp. 1–19 (Wiley‐VCH: Weinheim).

[3]  V. Fabos, D. Lantos, A. Bodor, A. M. Balint, L. T. Mika, O. E. Sielcken, A. Cuiper, I. Horvath, ChemSusChem 2008, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 18605204PubMed |

[4]  D. M. Li, F. Shi, S. Guo, Y. Q. Deng, Tetrahedron Lett. 2005, 46, 671.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. J. Peng, Y. Q. Deng, Tetrahedron Lett. 2001, 42, 403.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. X. Ren, L. D. Zueva, W. Ou, Tetrahedron Lett. 2001, 42, 8441.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Guo, Y. Q. Deng, Catal. Commun. 2005, 6, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. Katkevica, A. Zicmanis, P. Mekss, Chem. Heterocycl. Compd. 2010, 46, 158.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. Zicmanis, S. Katkevica, P. Mekss, Catal. Commun. 2009, 10, 614.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Kore, S. P. Kelley, P. Aduri, R. D. Rogers, Dalton Trans. 2018, 47, 7795.
         | Crossref | GoogleScholarGoogle Scholar | 29850701PubMed |

[11]  Z. Y. Du, Z. P. Li, Y. L. Gu, J. Zhang, Y. Q. Deng, J. Mol. Catal. Chem. 2005, 237, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Z. Gui, Y. Q. Deng, Z. D. Hu, Z. L. Sun, Tetrahedron Lett. 2004, 45, 2681.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Vilas, E. Tojo, Tetrahedron Lett. 2010, 51, 4125.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. F. Wang, H. T. Liu, L. Y. Jia, Y. Y. Wang, Y. J. Wang, Adv. Mat. Res. 2013, 734–737, 2128.

[15]  R. Kore, R. Srivastava, J. Mol. Catal. Chem. 2013, 376, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  X. F. Liu, L. F. Xiao, H. J. T. Wu, J. Chen, C. G. Xia, Helv. Chim. Acta 2009, 92, 1014.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Mao, Z. Y. Long, Y. Zhou, J. Li, X. C. Wang, J. Wang, RSC Adv. 2014, 4, 15635.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Z. H. Li, Q. S. Yang, L. Y. Gao, Y. Y. Xu, D. S. Zhang, S. F. Wang, X. Q. Zhao, Y. J. Wang, RSC Adv. 2016, 6, 83619.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. Turgis, J. Estager, M. Draye, V. Ragaini, W. Bonrath, J. M. Leveque, ChemSusChem 2010, 3, 1403.
         | Crossref | GoogleScholarGoogle Scholar | 21117118PubMed |

[20]  P. Berton, S. P. Kelley, H. Wang, A. S. Myerson, R. D. Rogers, Phys. Chem. Chem. Phys. 2017, 19, 25544.
         | Crossref | GoogleScholarGoogle Scholar | 28901353PubMed |

[21]  M. Hasani, J. L. Yarger, C. A. Angell, Chem. – Eur. J. 2016, 22, 13312.
         | Crossref | GoogleScholarGoogle Scholar | 27490171PubMed |

[22]  K. M. Johansson, E. I. Izgorodina, M. Forsyth, D. R. MacFarlane, K. R. Seddon, Phys. Chem. Chem. Phys. 2008, 10, 2972.
         | Crossref | GoogleScholarGoogle Scholar | 18473045PubMed |

[23]  J. A. McCune, P. He, M. Petkovic, F. Coleman, J. Estager, J. D. Holbrey, K. R. Seddon, M. Swadzba-Kwasny, Phys. Chem. Chem. Phys. 2014, 16, 23233.
         | Crossref | GoogleScholarGoogle Scholar | 25254612PubMed |

[24]  J. A. McCune, A. H. Turner, F. Coleman, C. M. White, S. K. Callear, T. G. Youngs, M. Swadzba-Kwasny, J. D. Holbrey, Phys. Chem. Chem. Phys. 2015, 17, 6767.
         | Crossref | GoogleScholarGoogle Scholar | 25670622PubMed |

[25]  K. Matuszek, A. Chrobok, F. Coleman, K. R. Seddon, M. Swadzba-Kwasny, Green Chem. 2014, 16, 3463.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Chen, M. Sharifzadeh, N. Mac Dowell, T. Welton, N. Shah, J. P. Hallett, Green Chem. 2014, 16, 3098.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. A. Dean, Mater. Manuf. Processes 1990, 5, 687.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. L. Chong, M. Forsyth, D. R. MacFarlane, Electrochim. Acta 2015, 159, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  P. A. H. Wyatt, Trans. Faraday Soc. 1969, 65, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. Xu, E. I. Cooper, C. A. Angell, J. Phys. Chem. B 2003, 107, 6170.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 2009, 11, 4962.
         | Crossref | GoogleScholarGoogle Scholar | 19562126PubMed |

[32]  K. Matuszek, S. Coffie, A. Chrobok, M. Swadzba-Kwasny, Catal. Sci. Technol. 2017, 7, 1045.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. M. Hogg, L. C. Brown, K. Matuszek, P. Latos, A. Chrobok, M. Swadzba-Kwasny, Dalton Trans. 2017, 46, 11561.
         | Crossref | GoogleScholarGoogle Scholar | 28766628PubMed |