Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dissolution of Amyloid Aggregates in Aqueous Ionic Liquid Solutions: A Case Study of Insulin Amyloid

Takahiro Takekiyo A B , Yuka Ishikawa A , Erika Yamaguchi A , Natsuki Yamada A and Yukihiro Yoshimura A
+ Author Affiliations
- Author Affiliations

A Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.

B Corresponding author. Email: take214@nda.ac.jp

Australian Journal of Chemistry 72(2) 81-86 https://doi.org/10.1071/CH18361
Submitted: 26 July 2018  Accepted: 3 September 2018   Published: 3 October 2018

Abstract

Dissolution of amyloid aggregates with high β-sheet content is required for the correct refolding of ordered protein aggregates. The dissolution of bovine insulin amyloid aggregates in five different ionic liquids (ILs) is investigated. These were comprised of three 1-butyl-3-methylimidazolium ([bmim])-based ILs, containing either SCN, NO3, or Cl anions, and two alkylammonium nitrate-based ILs, ethyl- and propylammonium nitrate (EAN and PAN). A broad IL concentration range (x = 0–30 mol-% IL) was analysed using FTIR spectroscopy combined with the Congo red assay. On the whole, the [bmim]-based ILs showed a higher dissolution ability than EAN and PAN for all concentrations of x. It is notable that the dissolution ability of dilute aqueous IL solutions (x < 15) for insulin amyloid was different to that of concentrated aqueous IL solutions (x > 15). The former condition for insulin amyloid may affect dissolution based on the denaturant effect of cations and anions in the ILs. The latter condition may affect this dissolution based on the hydrogen-bonding ability (α and β values) of the ILs, as described by the Kamlet–Taft parameters. Moreover, the difference between these α and β values (α – β) was found to be a good indicator of the dissolution ability of ILs for insulin amyloid aggregates in concentrated conditions above x = 20 (α – β < 0, strong dissolution ability; α – β > 0, weak dissolution ability). These findings may assist the future design of aqueous IL-based dissolution agents for ordered aggregated proteins.


References

[1]  T. L. Greaves, C. J. Drummond, Chem. Rev. 2015, 115, 11379.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev. 2017, 117, 7132.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. A. Tietze, F. Bordusa, R. Giernoth, D. Imhof, T. Lenzer, C. Mrestani-Klaus, I. Neudorf, ChemPhysChem 2013, 14, 4044.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Fujita, D. R. MacFarlane, M. Forsyth, M. Yoshizawa-Fujita, K. Murata, N. Nakamura, H. Ohno, Biomacromolecules 2007, 8, 2080.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  D. R. MacFarlane, R. Vijayaraghavan, H. N. Ha, A. Izgorodin, K. D. Weaverb, G. D. Elliott, Chem. Commun. 2010, 46, 77031.

[6]  F. van Rantwijk, R. M. Lau, R. A. Sheldon, Trends Biotechnol. 2003, 21, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. Weingärtner, C. Cabrele, C. Herrman, Phys. Chem. Chem. Phys. 2012, 14, 415.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Kumar, M. Bisht, P. Venkatesu, Int. J. Biol. Macromol. 2017, 96, 611.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. Idris, R. Vijayaraghavan, A. F. Patti, D. R. Macfarlane, ACS Sustain. Chem. & Eng. 2014, 2, 1888.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Fujita, M. Kajiyama, Y. Liu, N. Nakamura, H. Ohno, Chem. Commun. 2016, 52, 13491.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Takekiyo, Y. Ishikawa, Y. Yoshimura, J. Phys. Chem. B 2017, 121, 7614.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Singh, V. Upadhyay, A. K. Upadhyay, S. M. Singh, A. K. Panda, Microb. Cell Fact. 2015, 14, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. Meersman, C. M. Dobson, Biochim. Biophys. Acta 2006, 1764, 452.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  N. Hirota-Nakaoka, K. Hasegawa, H. Naiki, Y. Goto, J. Biochem. 2003, 134, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  M. Jackson, H. H. Mantsch, Biochim. Biophys. Acta 1991, 1078, 231.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  V. V. S. Pillai, A. Benedetto, Biophys. Rev. 2018, 10, 847.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Hwang, H. Choi, H.-K. Kim, D. H. Jo, T. D. Kim, Anal. Biochem. 2009, 386, 293.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  N. Debeljuh, C. J. Barrow, L. Henderson, N. Byrne, Chem. Commun. 2011, 47, 6371.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  N. Debeljuh, C. J. Barrow, N. Byrne, Phys. Chem. Chem. Phys. 2011, 13, 16534.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. R. Kalhor, M. Kamizi, J. Akbari, A. Heydari, Biomacromolecules 2009, 10, 2468.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. Kumar, P. Venkatesu, RSC Adv. 2013, 3, 362.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T. Takekiyo, Y. Yoshimura, Biophys. Rev. 2018, 10, 853.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  N. Byrne, C. A. Angell, Chem. Commun. 2009, 9, 1046.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  W. Dzwolak, V. Smirnovas, R. Jansen, R. Winter, Protein Sci. 2004, 13, 1927.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Bouchard, J. Zurdo, E. J. Nettleton, C. M. Dobson, C. L. Robinson, Protein Sci. 2000, 9, 1960.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  E.-R. M. Redwan, S. M. Matar, G. A. El-Aziz, E. A. Serour, Prep. Biochem. Biotechnol. 2008, 38, 24.

[28]  E. Chatani, H. Imamura, N. Yamamoto, M. Kato, J. Biol. Chem. 2014, 289, 10399.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Zurdo, J. I. Guijarro, C. M. Dobson, J. Am. Chem. Soc. 2001, 123, 8141.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. E. Klunk, J. W. Pettegrew, D. J. Abraham, J. Histochem. Cytochem. 1989, 37, 1273.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. Takekiyo, E. Yamaguchi, H. Abe, Y. Yoshimura, ACS Sustain. Chem. & Eng. 2016, 4, 422.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  T. Takekiyo, E. Yamaguchi, K. Yoshida, M. Kato, T. Yamaguchi, Y. Yoshimura, J. Phys. Chem. B 2015, 119, 6536.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. J. Kamlet, J. Luis, M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 1983, 48, 2877.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kipeläinen, H. Sixta, Biomacromolecules 2012, 13, 2896.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. Zou, Y. Li, W. Hao, X. Hu, G. Ma, J. Phys. Chem. B 2013, 117, 4003.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Y. Yonezawa, S. Tanaka, T. Kubota, K. Wakabayashi, K. Yutani, S. Fujisawa, J. Mol. Biol. 2002, 323, 237.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. Paul, P. K. Mandal, A. Samata, J. Phys. Chem. B 2005, 109, 9148.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. Krezel, W. A. Bal, J. Inorg. Biochem. 2004, 98, 161.
         | Crossref | GoogleScholarGoogle Scholar |