Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Can Popular DFT Approximations and Truncated Coupled Cluster Theory Describe the Potential Energy Surface of the Beryllium Dimer?*

Amir Karton A C and Laura K. McKemmish B
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.

B School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia.

C Corresponding author. Email: amir.karton@uwa.edu.au

Australian Journal of Chemistry 71(10) 804-810 https://doi.org/10.1071/CH18269
Submitted: 2 June 2018  Accepted: 2 July 2018   Published: 26 July 2018

Abstract

The potential energy surface (PES) of the ground state of the beryllium dimer poses a significant challenge for high-level ab initio electronic structure methods. Here, we present a systematic study of basis set effects over the entire PES of Be2 calculated at the full configuration interaction (FCI) level. The reference PES is calculated at the valence FCI/cc-pV{5,6}Z level of theory. We find that the FCI/cc-pV{T,Q}Z basis set extrapolation reproduces the shape of the FCI/cc-pV{5,6}Z PES as well as the binding energy and vibrational transition frequencies to within ~10 cm−1. We also use the FCI/cc-pV{5,6}Z PES to evaluate the performance of truncated coupled cluster methods (CCSD, CCSD(T), CCSDT, and CCSDT(Q)) and contemporary density functional theory methods (DFT) methods for the entire PES of Be2. Of the truncated coupled cluster methods, CCSDT(Q)/cc-pV{5,6}Z provides a good representation of the FCI/cc-pV{5,6}Z PES. The GGA functionals, as well as the HGGA and HMGGA functionals with low percentages of exact exchange tend to severely overbind the Be2 dimer, whereas BH&HLYP and M06-HF tend to underbind it. Range-separated DFT functionals tend to underbind the dimer. Double-hybrid DFT functionals show surprisingly good performance, with DSD-PBEP86 being the best performer. Møller–Plesset perturbation theory converges smoothly up to fourth order; however, fifth-order corrections have practically no effect on the PES.


References

[1]  A. Kalemos, J. Chem. Phys. 2016, 145, 214302.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Lesiuk, M. Przybytek, M. Musial, B. Jeziorski, R. Moszynski, Phys. Rev. A 2015, 91, 012510.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, G. K.-L. Chan, J. Chem. Phys. 2014, 140, 104112.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  V. V. Meshkov, A. V. Stolyarov, M. C. Heaven, C. Haugen, R. J. LeRoy, J. Chem. Phys. 2014, 140, 064315.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. El Khatib, G. L. Bendazzoli, S. Evangelisti, W. Helal, T. Leininger, L. Tenti, C. Angeli, J. Phys. Chem. A 2014, 118, 6664.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. Koput, Phys. Chem. Chem. Phys. 2011, 13, 20311.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. M. Merritt, V. E. Bondybey, M. C. Heaven, Science 2009, 324, 1548.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. Patkowski, R. Podeszwa, K. Szalewicz, J. Phys. Chem. A 2007, 111, 12822.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. M. L. Martin, Chem. Phys. Lett. 1999, 303, 399.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. Fusti-Molnar, P. G. Szalay, J. Phys. Chem. 1996, 100, 6288.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. Evangelisti, G. L. Bendazzoli, L. Gagliardi, Chem. Phys. 1994, 185, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  G. A. Petersson, W. A. Shirley, Chem. Phys. Lett. 1991, 181, 588.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Chem. Phys. Lett. 1990, 165, 513.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. A. Petersson, W. A. Shirley, Chem. Phys. Lett. 1989, 160, 494.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  V. E. Bondybey, Chem. Phys. Lett. 1984, 109, 436.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Karton, WIREs Comput. Mol. Sci. 2016, 6, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. Sylvetsky, K. A. Peterson, A. Karton, J. M. L. Martin, J. Chem. Phys. 2016, 144, 214101.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  K. A. Peterson, D. Feller, D. A. Dixon, Theor. Chem. Acc. 2012, 131, 1079.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Karton, S. Daon, J. M. L. Martin, Chem. Phys. Lett. 2011, 510, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Karton, P. R. Taylor, J. M. L. Martin, J. Chem. Phys. 2007, 127, 064104.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Mardirossian, M. Head-Gordon, Mol. Phys. 2017, 115, 2315.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  L. Goerigk, A. Hansen, C. A. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Peverati, D. G. Truhlar, Phil. Trans. R. Soc. A 2014, 372, 20120476.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Karton, J. M. L. Martin, J. Chem. Phys. 2010, 133, 144102.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  MRCC, a quantum chemical program suite written by M. Kállay et al. See also: http://www.mrcc.hu (verified 13 July 2018).

[27]  Z. Rolik, L. Szegedy, I. Ladjanszki, B. Ladoczki, M. Kállay, J. Chem. Phys. 2013, 139, 094105.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  T. H. Dunning, K. A. Peterson, A. K. Wilson, J. Chem. Phys. 2001, 114, 9244.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. Ernzerhof, J. P. Perdew, J. Chem. Phys. 1998, 109, 3313.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. Peverati, D. G. Truhlar, J. Chem. Theory Comput. 2012, 8, 2310.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. Adamo, V. J. Barone, Chem. Phys. 1999, 110, 6158.

[42]  A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 13126.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  H. S. Yu, X. He, S. L. Li, D. G. Truhlar, Chem. Sci. 2016, 7, 5032.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 2001, 115, 3540.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  L. Goerigk, S. Grimme, WIREs Comput. Mol. Sci. 2014, 4, 576.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  S. Grimme, J. Chem. Phys. 2006, 124, 034108.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 2006, 8, 4398.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, J. M. L. Martin, J. Phys. Chem. A 2008, 112, 12868.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  S. Kozuch, D. Gruzman, J. M. L. Martin, J. Phys. Chem. C 2010, 114, 20801.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  É. Brémond, C. Adamo, J. Chem. Phys. 2011, 135, 024106.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  S. Grimme, WIREs Comput. Mol. Sci. 2011, 1, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  M. Pitonak, P. Neogrady, J. Cerny, S. Grimme, P. Hobza, ChemPhysChem 2009, 10, 282.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  A. Karton, L. Goerigk, J. Comput. Chem. 2015, 36, 622.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03 2016 (Gaussian, Inc.: Wallingford, CT).

[64]  S. N. Yurchenko, L. Lodi, J. Tennyson, A. V. Stolyarov, Comput. Phys. Commun. 2016, 202, 262.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  J. Tennyson, L. Lodi, L. K. McKemmish, S. N. Yurchenko, J. Phys. B 2016, 49, 102001.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  A. Karton, J. M. L. Martin, J. Phys. Chem. A 2007, 111, 5936.
         | Crossref | GoogleScholarGoogle Scholar |