Synthesis of a Highly Functionalised and Homochiral 2-Iodocyclohexenone Related to the C-Ring of the Polycyclic, Indole Alkaloids Aspidophytine and Haplophytine
Michael Dlugosch A and Martin G. Banwell A BA Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.
B Corresponding author. Email: Martin.Banwell@anu.edu.au
Australian Journal of Chemistry 71(8) 573-579 https://doi.org/10.1071/CH18267
Submitted: 2 June 2018 Accepted: 13 July 2018 Published: 17 August 2018
Abstract
The enzymatically-derived and enantiomerically pure (1S,2S)-3-bromocyclohexa-3,5-diene-1,2-diol (7) has been elaborated over 10 steps into cyclohexenone 8. The latter compound embodies the enantiomeric form of the C-ring associated with the hexacyclic framework of the alkaloid aspidophytine (2). As such, this work sets the stage for effecting the conversion of the enantiomeric metabolite ent-7 into compound ent-8, and thence, through previously established protocols, including a palladium-catalysed Ullmann cross-coupling reaction, into the title alkaloids.
References
[1] (a) E. F. Rogers, H. R. Snyder, R. F. Fischer, J. Am. Chem. Soc. 1952, 74, 1987.| Crossref | GoogleScholarGoogle Scholar |
(b) H. R. Snyder, R. F. Fischer, J. F. Walker, H. E. Els, G. A. Nussberger, J. Am. Chem. Soc. 1954, 76, 2819, 4601.
(c) H. R. Snyder, H. F. Strohmayer, R. A. Mooney, J. Am. Chem. Soc. 1958, 80, 3708.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. P. Cava, S. K. Talapatra, K. Monura, J. A. Weisback, B. Douglas, E. C. Shoop, Chem. In. (London) 1963, 1242.
(e) M. P. Cava, S. K. Talapatra, P. Yates, M. Rosenberger, A. G. Szabo, B. Douglas, R. Raffauf, E. C. Shoop, J. A. Weisbach, Chem. Ind. (London) 1963, 1875.
(f) I. D. Rae, M. Rosenberger, A. G. Szabo, C. R. Willis, P. Yates, D. E. Zacharias, G. A. Jeffrey, B. Douglas, J. L. Kirkpatrick, J. A. Weisbach, J. Am. Chem. Soc. 1967, 89, 3061.
| Crossref | GoogleScholarGoogle Scholar |
[2] P.-T. Cheng, S. C. Nyburg, F. N. MacLachlan, P. Yates, Can. J. Chem. 1976, 54, 726.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. Yates, F. N. MacLachlan, I. D. Rae, M. Rosenberger, A. G. Szabo, C. R. Willis, M. P. Cava, M. Behforouz, M. V. Lakshmikantham, W. Zeigler, J. Am. Chem. Soc. 1973, 95, 7842.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 6771.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) S. Sumi, K. Matsumoto, H. Tokuyama, T. Fukuyama, Org. Lett. 2003, 5, 1891.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Sumi, K. Matsumoto, H. Tokuyama, T. Fukuyama, Tetrahedron 2003, 59, 8571.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. M. Mejía-Oneto, A. Padwa, Org. Lett. 2006, 8, 3275.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. P. Marino, G. Cao, Tetrahedron Lett. 2006, 47, 7711.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. M. Mejía-Oneto, A. Padwa, Helv. Chim. Acta 2008, 91, 285.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. C. Nicolaou, S. M. Dalby, U. Majumder, J. Am. Chem. Soc. 2008, 130, 14942.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Satoh, H. Ueda, H. Tokuyama, Tetrahedron 2013, 69, 89.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Yang, F. G. Qiu, Angew. Chem. Int. Ed. 2013, 52, 6015.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. Ueda, H. Satoh, K. Matsumoto, K. Sugimoto, K. Sugimoto, T. Fukuyama, H. Tokuyama, Angew. Chem. Int. Ed. 2009, 48, 7600.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. C. Nicolaou, S. M. Dalby, S. Li, T. Suzuki, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2009, 48, 7616.
| Crossref | GoogleScholarGoogle Scholar |
[8] For a summary of these syntheses of haplophytine see: E. Doris, Angew. Chem. Int. Ed. 2009, 48, 7480.
| Crossref | GoogleScholarGoogle Scholar |
[9] H. Satoh, K. Ojima, H. Ueda, H. Tokuyama, Angew. Chem. Int. Ed. 2016, 55, 15157.
| Crossref | GoogleScholarGoogle Scholar |
[10] L. V. White, M. G. Banwell, J. Org. Chem. 2016, 81, 1617.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. G. Banwell, D. W. Lupton, A. C. Willis, Aust. J. Chem. 2005, 58, 722.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. H. Tan, M. G. Banwell, A. C. Willis, T. A. Reekie, Org. Lett. 2012, 14, 5621.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) For some useful points of entry into the literature on cis-1,2-dihydrocatechols see: T. Hudlicky, J. W. Reed, Chem. Soc. Rev. 2009, 38, 3117.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. A. Vila, D. Umpiérrez, N. Veiga, G. Seoane, I. Carrera, S. Rodríguez Giodano, Adv. Synth. Catal. 2017, 359, 2149.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. S. Taher, M. G. Banwell, J. N. Buckler, Q. Yan, P. Lan, Chem. Rec. 2018, 18, 239.
| Crossref | GoogleScholarGoogle Scholar |
[14] F. Khan, M. Dlugosch, X. Liu, M. G. Banwell, Acc. Chem. Res.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) M. G. Banwell, M. T. Jones, T. A. Reekie, B. D. Schwartz, S. H. Tan, L. V. White, Org. Biomol. Chem. 2014, 12, 7433.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Tang, M. G. Banwell, R. Cobalt, in Encyclopedia of Reagents for Organic Synthesis [Online (eEROS)] (Eds P. L. Fuchs, A. B. Charette, T. Rovis, J. W. Bode) 2018 (John Wiley & Sons Ltd: Chichester, UK), in press.
[16] M. A. Toczko, C. H. Heathcock, J. Org. Chem. 2000, 65, 2642.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Hudlicky, U. Rinner, D. Gonzalez, H. Akgun, S. Schilling, P. Siengalewicz, T. A. Martinot, G. R. Pettit, J. Org. Chem. 2002, 67, 8726.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Hudlicky, E. E. Boros, H. F. Olivo, J. S. Merola, J. Org. Chem. 1992, 57, 1026.
| Crossref | GoogleScholarGoogle Scholar |
[19] V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett. 1976, 17, 1973.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) For some recent applications of this process in work described by our group, see: A. D. Findlay, M. G. Banwell, Org. Lett. 2009, 11, 3160.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. G. Banwell, X. Ma, O. P. Karunaratne, A. C. Willis, Aust. J. Chem. 2010, 63, 1437.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. N. Buckler, E. S. Taher, N. J. Fraser, A. C. Willis, P. D. Carr, C. J. Jackson, M. G. Banwell, J. Org. Chem. 2017, 82, 7869.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) R. E. Ireland, L. Liu, J. Org. Chem. 1993, 58, 2899.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P. M. Wovkulich, M. R. Uskokovic, Tetrahedron Lett. 1992, 33, 917.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. J. Linderman, M. Jaber, B. D. Griedel, J. Org. Chem. 1994, 59, 6499.
| Crossref | GoogleScholarGoogle Scholar |
[26] R. A. Samame, C. M. Owens, S. D. Rychnovsky, Chem. Sci. 2016, 7, 188.
| Crossref | GoogleScholarGoogle Scholar |
[27] G. C. Tsui, F. Menard, M. Lautens, Org. Lett. 2010, 12, 2456.
| Crossref | GoogleScholarGoogle Scholar |