Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Thioamide Derivative of the Potent Antitubercular 2-(Decylsulfonyl)acetamide is Less Active Against Mycobacterium tuberculosis, but a More Potent Antistaphylococcal Agent

Hsien-Kuo Sun A B , Angel Pang C , Dylan C. Farr A , Tamim Mosaiab A , Warwick J. Britton C , Shailendra Anoopkumar-Dukie B , I. Darren Grice A , Milton J. Kiefel A , Nick P. West C D , Gary D. Grant B E and Todd A. Houston A E
+ Author Affiliations
- Author Affiliations

A Institute for Glycomics, Gold Coast Campus, Griffith University, Qld 4222, Australia.

B School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Qld 4222, Australia

C Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia.

D School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia.

E Corresponding authors. Email: g.grant@griffith.edu.au; t.houston@griffith.edu.au

Australian Journal of Chemistry 71(9) 716-719 https://doi.org/10.1071/CH18206
Submitted: 8 May 2018  Accepted: 31 August 2018   Published: 19 September 2018

Abstract

Due to the prevalence of thioamides in antibacterial compounds, we chose to convert the amide in the antitubercular compound 2-(decylsulfonyl)acetamide to a thioamide using Lawesson’s reagent to study its activity against a range of microorganisms. This derivative (8) had significantly diminished activity against tuberculosis but slightly better activity than the parent compound against the Gram positive species Staphylococcus aureus. This activity against a second major pathogen is remarkable considering the structural simplicity of these compounds.


References

[1]  (a) B. L. Wilkinson, L. F. Bornaghi, A. D. Wright, T. A. Houston, S.-A. Poulsen, Bioorg. Med. Chem. Lett. 2007, 17, 1355.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Quader, S. E. Boyd, I. D. Jenkins, T. A. Houston, J. Org. Chem. 2007, 72, 1962.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. T. Walker, T. A. Houston, Tuberculosis 2013, 93, 102.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Quader, S. E. Boyd, I. D. Jenkins, T. A. Houston, Carbohydr. Res. 2015, 413, 16.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Mosaiab, S. Boiteux, A. Zulfikar, M. Wei, M. J. Kiefel, T. A. Houston, ChemBioChem 2018, 19, 1476.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) L. Ballell, R. A. Field, K. Duncan, R. J. Young, Antimicrob. Agents Chemother. 2005, 45, 1143.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. A. Vannelli, A. Dykman, P. R. Ortiz de Montellano, J. Biol. Chem. 2002, 277, 12824.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Nunn, J. Porter, P. Winstanley, Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 578.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. C. Davis, S. G. Franzblau, A. R. Martin, Bioorg. Med. Chem. Lett. 1998, 8, 843.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. Doležal, K. Waisser, E. Petrlíková, J. Kuneš, L. Kubicová, M. Machácek, J. Kaustová, H. M. Dahse, Arch. Pharm. Chem. Life Sci. 2009, 342, 113.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. M. Lee, M. M. Siegel, G. O. Morton, J. J. Goodman, R. T. Testa, D. B. Borders, J. Antibiot. 1995, 48, 282.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Lincke, S. Behnken, K. Ishida, M. Roth, C. Hertweck, Angew. Chem. Int. Ed. 2010, 49, 2011.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  P. B. Jones, N. M. Parrish, T. A. Houston, A. Stapon, N. P. Bansal, J. D. Dick, C. A. Townsend, J. Med. Chem. 2000, 43, 3304.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. M. Parrish, T. Houston, P. B. Jones, C. A. Townsend, J. D. Dick, Antimicrob. Agents Chemother. 2001, 45, 1143.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Ozturk, E. Ertas, O. Mert, Chem. Rev. 2007, 107, 5210.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  C. M. Lee, W. D. Kumler, J. Org. Chem. 1962, 27, 2052.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. M. Andrews, J. Antimicrob. Chemother. 2001, 48, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement (June 2010 Update) 2010 (Clinical and Laboratory Standards Institute: Wayne, PA).

[11]  H. T. Wright, K. A. Reynolds, Curr. Opin. Microbiol. 2007, 10, 447.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. K. Brown, R. C. Taylor, A. Bhatt, K. Futterer, G. S. Besra, PLoS One 2009, 4, e6306.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H.-K. Sun, M. Seshadri, S. Lingard, W. Monaghan, J. Faoagali, E. Chan, H. McDonald, T. A. Houston, M. King, I. Peak, J. Wilson, A. Haywood, B. Spencer, P. Dunn, G. D. Grant, Curr. Res. Microbiol. 2011, 2, 1.
         | Crossref | GoogleScholarGoogle Scholar |