Sequential Detection of CN− and HSO4− Anions in an Aqueous Environment Utilizing a New Colorimetric Azoimine Receptor: Mimicking Logic Gate Behaviour and a Security Keypad Lock
Khatereh Rezaeian A , Hamid Khanmohammadi A B and Nafiseh Shabani AA Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.
B Corresponding author. Email: h-khanmohammadi@araku.ac.ir
Australian Journal of Chemistry 71(5) 389-396 https://doi.org/10.1071/CH18048
Submitted: 30 January 2018 Accepted: 23 March 2018 Published: 17 April 2018
Abstract
A new isonicotiamide-based azoimine receptor has been successfully devised and synthesised for dual-recognition of CN− and HSO4− anions in aqueous media (3 : 2 DMSO–water solution). The devised azomethine probe detected lethal cyanide ions under UV-vis spectroscopy through the rapid appearance of an orange colour. More importantly, the colour and spectroscopic changes of the devised chemosensor could be revived upon the addition of HSO4− to the sensor containing cyanide ions. Furthermore, other surveyed anions failed to induce a similar response. Interestingly, based on changes in absorption intensity at a particular wavelength in the presence of two aforementioned anions, as two chemical inputs, an INHIBIT logic gate has been elaborated. Moreover, the reversibility of the sensory system provided an opportunity to present a sequential logic circuit at a molecular level. In accession, the target chemosensor could operate as a molecular keypad lock with sequential chemical inputs of CN− and HSO4− anions.
References
[1] (a) J. A. Cotruvo, A. T. Aron, K. M. Ramos-Torres, C. J. Chang, Chem. Soc. Rev. 2015, 44, 4400.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivFansrg%3D&md5=9072a51e76308965d5df8bea5f732e26CAS |
(b) K. Rezaeian, H. Khanmohammadi, S. Gholizadeh Dogaheh, New J. Chem. 2018, 42, 2158.
| Crossref | GoogleScholarGoogle Scholar |
[2] T. D. Ashton, K. A. Jolliffe, F. M. Pfeffer, Chem. Soc. Rev. 2015, 44, 4547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1ejt7g%3D&md5=de4c75a619f5f63738c1b8a9282e73acCAS |
[3] M. P. Algi, Tetrahedron 2016, 72, 1558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisV2rtbs%3D&md5=5ad5aa465a0ce87f9cd372e4cc7ac8d9CAS |
[4] F. Wang, L. Wang, X. Q. Chen, J. Yoon, Chem. Soc. Rev. 2014, 43, 4312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVKju7c%3D&md5=b9174a85c87f972055a6dee645b94c62CAS |
[5] N. Maurya, S. Bhardwaj, A. K. Singh, RSC Adv. 2016, 6, 71543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1WrsbrE&md5=a2545577109d942ebfcbe624be9b34faCAS |
[6] K. Rezaeian, H. Khanmohammadi, V. Arab, Spectrochim. Acta Part A 2015, 151, 848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOisLfI&md5=69296c4792549184a920618acdd6bdd9CAS |
[7] C. Zong, K. Ai, G. Zhang, H. Li, L. Lu, Anal. Chem. 2011, 83, 3126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SjtL4%3D&md5=ae81d2a9e1066fa094347f91be183bebCAS |
[8] A. Lee, J. Chin, O. K. Park, H. Chung, J. W. Kim, S. Y. Yoon, K. Park, Chem. Commun. 2013, 49, 5969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWns70%3D&md5=fdd4d2edba54a86953dccf3d54620cf2CAS |
[9] S. Bhardwaj, A. K. Singh, J. Hazard. Mater. 2015, 296, 54.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslelsLY%3D&md5=62a5502ec543be48d04b190c351ce11aCAS |
[10] M. Zhang, W. Lu, J. Zhou, Tetrahedron 2014, 70, 1011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOku7jM&md5=41c8f44482f320d7add83e9c155b804cCAS |
[11] W. J. Qu, J. Guan, T. B. Wei, G. T. Yan, Q. Lin, Y. M. Zhang, RSC Adv. 2016, 6, 35804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKls7w%3D&md5=12ecab724c51eff94904dca55157f177CAS |
[12] D. Roy, A. Chakraborty, R. Ghosh, Spectrochim. Acta Part A 2018, 191, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1WntrzJ&md5=b9c351e0eb56aa2bc9fc816b44d9cadbCAS |
[13] J. Liu, Y. Q. Xie, Q. Lin, B. B. Shi, P. Zhang, Y. M. Zhang, T. B. Wei, Sens. Actuators B 2013, 186, 657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtL7I&md5=ad79dae4bc5cc90f60484f357963798aCAS |
[14] T. B. Wei, W. T. Li, Q. Li, W. J. Qu, H. Li, G. T. Yan, Q. Lin, H. Yao, Y. M. Zhang, RSC Adv. 2016, 6, 43832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVyju7Y%3D&md5=7d62de3f248ecd44d6ab6dd075c340abCAS |
[15] M. Dong, Y. Peng, Y. M. Dong, N. Tang, Y. W. Wang, Org. Lett. 2012, 14, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SlsrjJ&md5=b2b9abca6be33d4ced7b451f298ead8cCAS |
[16] G. Balamurugan, S. Velmathi, Anal. Methods 2016, 8, 1705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1ekug%3D%3D&md5=64a81649653c9877020f36cb7f6ebc10CAS |
[17] S. K. Kim, J. L. Sessler, Chem. Soc. Rev. 2010, 39, 3784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksb%2FJ&md5=fe1410a04c8847d87715fb52766490ddCAS |
[18] S. K. Patra, S. K. Sheet, B. Sen, K. Aguan, D. R. Roy, S. Khatua, J. Org. Chem. 2017, 82, 10234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlOksLfK&md5=01bdc7474e0598816c6da1817681c849CAS |
[19] P. X. Pei, J. H. Hu, P. W. Ni, C. Long, J. X. Su, Y. Sun, RSC Adv. 2017, 7, 46832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsF2rur7I&md5=96e8de99ee866e688046bffa7b9bb381CAS |
[20] L. Wang, J. Ou, G. Fang, D. Cao, Sens. Actuators B 2016, 222, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlyjtbjN&md5=96972f109d0cea277b057cda4b46ff40CAS |
[21] S. Erdemir, B. Tabakci, M. Tabakci, Sens. Actuators B 2016, 228, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSmsrs%3D&md5=5b4623a7bb5c5fa7c3c108f880c45a14CAS |
[22] J. Rull-Barrull, M. d’Halluin, E. Le Grognec, F. X. Felpin, Chem. Commun. 2016, 52, 2525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2ksbfM&md5=0377b49324692b1aa85180300cac1ea8CAS |
[23] F. Si, C. E. Romero, Z. Yao, Z. Xu, R. L. Morey, B. N. Liebowitz, Fuel Process. Technol. 2009, 90, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVegtrrK&md5=913db5b6a3282e82b3dbabe07bd4a7eaCAS |
[24] P. Li, Y. M. Zhang, Q. Lin, J. Q. Li, T. B. Wei, Spectrochim. Acta Part A 2012, 90, 152.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. Kaur, H. Kaur, K. Singh, Analyst 2013, 138, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWhtrrJ&md5=48700af71a84823ad423a42a44aa5cc5CAS |
[26] J. Andreasson, U. Pischel, Chem. Soc. Rev. 2010, 39, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrrO&md5=60523f2e8e4bff76e568e233301f8595CAS |
[27] Y. Wu, Y. Xie, Q. Zhang, H. Tian, W. Zhu, A. D. Q. Li, Angew. Chem. Int. Ed. 2014, 53, 2090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVylt7o%3D&md5=19e9e945b6e85277068ea878cdb96c1eCAS |
[28] M. A. Kaloo, J. Sankar, New J. Chem. 2014, 38, 923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisF2qtrw%3D&md5=564724d172d0ba9cfe0d44338b67c7d3CAS |
[29] R. Alam, R. Bhowmick, A. S. M. Islam, A. Katarkar, K. Chaudhuri, M. Ali, New J. Chem. 2017, 41, 8359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtV2qsrjL&md5=e9b8ee0259fb342057e295c25e5c61f9CAS |
[30] M. Massey, I. L. Medintz, M. G. Ancona, W. R. Algar, ACS Sens. 2017, 2, 1205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXht1yksrnO&md5=86434666e62ebd70adc12bf9440de191CAS |
[31] K. Rezaeian, H. Khanmohammadi, New J. Chem. 2015, 39, 2081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2it7jM&md5=ad4bd3c32bb9a3875ce60a99a7d2464aCAS |
[32] S. Paul, P. Ghosh, S. Bhuyan, S. K. Mukhopadhyay, P. Banerjee, Dalton Trans. 2018, 47, 1082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhvFajsLjM&md5=819798abc4c95be291903f95431d6169CAS |
[33] (a) V. V. Jerca, F. A. Nicolescu, R. Trusca, E. Vasile, A. Baran, D. F. Anghel, D. S. Vasilescu, D. M. Vuluga, React. Funct. Polym. 2011, 71, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKgsbY%3D&md5=57ce11230c17ee92df92d81419c82241CAS |
(b) Y. S. Lin, J. X. Zheng, Y. K. Tsui, Y. P. Yen, Spectrochim. Acta Part A 2011, 79, 1552.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Lou, J. Qin, Z. Li, Analyst 2009, 134, 2071.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Tomasulo, F. M. Raymo, Org. Lett. 2005, 7, 4633.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. K. Tsui, S. Devaraj, Y. P. Yen, Sens. Actuators B 2012, 161, 510.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Rezaeian, H. Khanmohammadi, Supramol. Chem. 2016, 28, 256.
| Crossref | GoogleScholarGoogle Scholar |
[34] H. Khanmohammadi, K. Rezaeian, RSC Adv. 2014, 4, 1032.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGms7vM&md5=611e73b3df3c201b56c8003dc9bca371CAS |
[35] L. Wang, X. Chen, D. Cao, RSC Adv. 2016, 6, 96676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1SrtLnP&md5=aa44b43b2bd502318309891641ec80efCAS |
[36] H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXktlCisA%3D%3D&md5=d2f0b100d589875d96120ae10376e3afCAS |
[37] Y. Shiraishi, N. Hayashi, M. Nakahata, S. Sakai, T. Hirai, RSC Adv. 2017, 7, 32304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVGnsLfF&md5=c659e23333e2bf8193b44eb9e3eabac6CAS |
[38] F. Amhed, I. Chorus, J. Cotruvo, D. Cunliffe, T. Endo, J. K. Fawell, G. Howard, P. Jackson, S. Kumar, S. Kunikane, Y. Magara, E. Ohanian, C. N. Ong, O. Schmoll, Guidelines for Drinking-Water Quality, 3rd edn 2004 (World Health Organization: Geneva).