Computational Spectroscopic Characterization of a Bistable Binuclear Complex [(CO)2(benzoate)FeII/III(terephthalate)CoIII/II(benzoate)(CO)2]+
Hossein Shirani A and Hassan Sabzyan B CA Department of Chemistry, College of Science, Arak Branch, Islamic Azad University, Arak 3836119131, Islamic Republic of Iran.
B Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
C Corresponding author. Email: sabzyan@sci.ui.ac.ir
Australian Journal of Chemistry 71(5) 348-359 https://doi.org/10.1071/CH18044
Submitted: 1 February 2018 Accepted: 1 March 2018 Published: 10 April 2018
Abstract
Electric dipole moments, polarizabilities, and IR, Raman, optical rotatory dispersion, and electronic and vibrational circular dichroism spectra of the four cis–trans isomers of the proposed [(CO)2(benzoate)FeII/III(terephthalate)CoIII/II(benzoate)(CO)2]+ binuclear complex, having bistablity due to intramolecular charge transfer (IMCT), is investigated using the time-dependent density functional theory ((TD)DFT) B3LYP/6–31G(d,p)[LanL2DZ] method. Results show that the two FeII–CoIII and FeIII–CoII IMCT states of this binuclear complex have distinctly different spectroscopic, optical, and electric response properties, and are sensitive to the cis–trans arrangement of the ligands around the two metallic centres. Furthermore, intrinsic reaction coordinates inter-connecting the two IMCT states are identified using the Duschinsky matrix method. Only one or two of the normal coordinates remain almost (above 80 %) intact during the IMCT reaction which denotes global changes in the bonding strengths and potential energy hypersurface of this bistable binuclear complex. Analysis of the calculated spin densities characterizes the IMCT transition state structures of the trans–trans, cis–cis, and trans–cis isomers as early, early, and late transition states, respectively.
References
[1] Electron Transfer in Chemistry (Ed. V. Balzani) 2001 (Wiley: Weinheim).[2] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.
| Crossref | GoogleScholarGoogle Scholar |
[3] W. C. Anson, S. Ghosh, H. S. Schiffer, S. S. Stahl, J. Am. Chem. Soc. 2016, 138, 4186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt1ygtLw%3D&md5=f4a1a485261ad3a07380793b15ab47e6CAS |
[4] R. A. Corcos, O. Villanueva, C. R. Walroth, K. S. Sharma, J. Bacsa, M. K. Lancaster, E. C. MacBeth, F. J. Berry, J. Am. Chem. Soc. 2016, 138, 1796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWktbs%3D&md5=4972135c44c7ee409c244c73e8478cf3CAS |
[5] X. K. Guo, L. B. Zhang, D. Wei, J. L. Niu, Chem. Sci. 2015, 6, 7059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKgtLrE&md5=b26006f86e08ae7263a5c481438ad5abCAS |
[6] N. Y. Nia, P. Farahani, H. Sabzyan, M. Zendehdel, M. Oftadeh, Phys. Chem. Chem. Phys. 2014, 16, 11481.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Naeem, A. Ribes, A. J. P. White, M. N. Haque, K. B. Holt, J. D. E. Ely, Inorg. Chem. 2013, 52, 4700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOnsbo%3D&md5=685503843dc091d86092dfd32f53be9dCAS |
[8] S. Hayami, K. Hiki, T. Kawahara, Y. Maeda, D. Urakami, K. Inoue, M. Ohama, S. Kawata, O. Sato, Chem. – Eur. J. 2009, 15, 3497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1Ohtr8%3D&md5=7430f64efe3a2a250fdeab3a6ba057b8CAS |
[9] S. M. Neville, B. Moubaraki, K. S. Murray, C. G. Kepert, Angew. Chem. Int. Ed. 2007, 46, 2059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFKmsL4%3D&md5=5300da8dd8c518e88a5f22324068cfafCAS |
[10] G. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=5bf42b367c013705aa5fd211dffcb526CAS |
[11] A. Hauser, A. Vef, P. Adler, J. Chem. Phys. 1991, 95, 8710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1Wntbg%3D&md5=0a6ade470d6c7f65507e9c972a144540CAS |
[12] A. B. Gaspar, M. C. Muñoz, J. A. Real, J. Mater. Chem. 2006, 16, 2522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVyhsL8%3D&md5=65273b090a7f7478a34671145cf9aa15CAS |
[13] N. Kindermann, A. Schober, S. Demeshko, N. Lehnert, F. Meyer, Inorg. Chem. 2016, 55, 11538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhslelt7nE&md5=f3efa4c74a4c667fccc38c0a16132836CAS |
[14] S. Okamoto, L. D. Eltis, Metallomics 2011, 3, 963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSjtbvI&md5=2bd0e72721febe3434388185e4272c6eCAS |
[15] W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOktL0%3D&md5=e426d572f2d3ad9dd2a4bf2a5beb0f96CAS |
[16] H. Chen, Z. Sun, S. Ye, D. Lu, P. Du, J. Mater. Chem. A 2015, 3, 1.
[17] W. M. Singh, T. Baine, S. Kudo, S. Tian, N. X. A. Ma, H. Zhou, J. N. DeYonker, T. C. Pham, C. J. Bollinger, L. D. Baker, B. Yan, C. E. Webster, X. Zhao, Angew. Chem. Int. Ed. 2012, 51, 5941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFCgs7Y%3D&md5=0f5b44ff9dc4a37e2ec4227fabe0c61dCAS |
[18] M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, C. A. Ross, Sci. Rep. 2016, 6, 23640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt1GntbY%3D&md5=7d0c1505ccb24c56244a5034635cc598CAS |
[19] T. Liu, Y. M. Darensbourg, J. Am. Chem. Soc. 2007, 129, 7008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2itr4%3D&md5=3fb4f21e793bd01cd0e3698ecf6fb560CAS |
[20] H. Y. Wang, E. Mijangos, S. Ott, A. Thapper, Angew. Chem. Int. Ed. 2014, 53, 14499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFaitbnF&md5=a6ae449eb6a08a4737a849dae82a0c89CAS |
[21] J. Burgess, M. V. Twigg, Encyclopedia of Inorganic Chemistry 2006 (Wiley: Hoboken, NJ).
[22] P. Gütlich, Eur. J. Inorg. Chem. 2013, 581.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Pápai, G. Vankó, C. D. Graaf, T. Rozgonyi, J. Chem. Theory Comput. 2013, 9, 509.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. Liu, T. Liu, M. B. Hall, J. Chem. Theory Comput. 2015, 11, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKktbnP&md5=1d5506fbf09983b37dfb20abb0fc78d0CAS |
[25] Y. Yang, N. W. Michael, M. M. Kenneth, J. Phys. Chem. A 2009, 113, 9843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWjsLbK&md5=6528dc7efd772e65c06eeb5752d375fbCAS |
[26] M. L. Laury, A. K. Wilson, J. Chem. Theory Comput. 2013, 9, 3939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1KltLvJ&md5=54455f48d2b19a634e42c3be36bc1c98CAS |
[27] D. Coskun, S. V. Jerome, R. A. Friesner, J. Chem. Theory Comput 2016, 12, 1121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtlygu7c%3D&md5=a961cc5c4cd68045b9ca415e667784ccCAS |
[28] H. Sabzyan, H. Shirani, Int. J. Quantum Chem. , submitted.
[29] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=209e9cc4a137287cdf7908911350261bCAS |
[30] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=ce4cdcd8c04eed00f9f8f800578a5d15CAS |
[31] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=df1526881f15a263e8f03056ba36ca68CAS |
[32] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
| Crossref | GoogleScholarGoogle Scholar |
[33] L. Barron, Molecular Light Scattering and Optical Activity 2004 (Oxford University Press: Cambridge).
[34] T. D. Crawford, M. C. Tam, M. L. Abrams, J. Phys. Chem. A 2007, 111, 12057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KitrbJ&md5=e8640c663a32d1d3a9e31876a80efb01CAS |
[35] J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, M. Krykunov, J. Phys. Chem. A 2006, 110, 2461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslaltg%3D%3D&md5=4505c7215647aa81e8714fb4c42999e2CAS |
[36] P. Norman, K. Ruud, T. Helgaker, J. Chem. Phys. 2004, 120, 5027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFSntbc%3D&md5=f4b2239b0719c9ed49cd09106d6d7d6bCAS |
[37] N. Berova, K. Nakanishi, R. W. Woody, Circular Dichroism: Principles and Applications 2000 (Wiley-VCH: New York, NY).
[38] C. Diedrich, S. Grimme, J. Phys. Chem. A 2003, 107, 2524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGntLs%3D&md5=40462608d34de170456db8766c1f588dCAS |
[39] T. D. Crawford, Theor. Chem. Acc. 2006, 115, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yksbk%3D&md5=ebf37412cdadfa7317afadc7b30a7d3cCAS |
[40] K. Fukui, Acc. Chem. Res. 1981, 14, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSgtL0%3D&md5=5f33939cf78ac6b63c4846e338264dbfCAS |
[41] F. Santoro, A. Lami, R. Improta, V. Barone, J. Chem. Phys. 2007, 126, 184102.
| Crossref | GoogleScholarGoogle Scholar |
[42] F. Santoro, A. Lami, R. Improta, V. Barone, J. Chem. Phys. 2007, 126, 084509.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, G09 2009 (Gaussian, Inc.: Wallingford, CT).
[44] GaussView 03 2003 (Gaussian Inc.: Pittsburg, PA).
[45] Time-Dependent Density Functional Theory (Eds M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross) 2006 (Springer: Berlin).
[46] L. A. Nafie, R. K. Dukor, T. B. Freedman, in Handbook of Vibrational Spectroscopy (Eds J. M. Chalmers, P. R. Griffiths) 2002, Vol. 1, pp. 731–744 (John Wiley & Sons: Chichester).
[47] P. J. Stephens, F. J. Delvin, Chirality 2000, 12, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFSktLg%3D&md5=9864dd9445dcfaa9298ec115514abfefCAS |
[48] E. Giorgio, R. G. Viglione, R. Zanasi, C. Rosini, J. Am. Chem. Soc. 2004, 126, 12968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Wisro%3D&md5=94fdb739488b14c360132635900c2140CAS |
[49] F. Duschinsky, Acta Physicochim. URSS 1937, 7, 551.
[50] F. Santoro, A. Lami, R. Improta, J. Bloino, V. Barone, J. Chem. Phys. 2008, 128, 224311.
| Crossref | GoogleScholarGoogle Scholar |