Synthesis of Highly Enantio-Enriched Heliespirones A and C by a Diastereoselective Aromatic Claisen Rearrangement
Philip Norcott A and Christopher S. P. McErlean A B
+ Author Affiliations
- Author Affiliations
A School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: christopher.mcerlean@sydney.edu.au
Australian Journal of Chemistry 71(5) 366-372 https://doi.org/10.1071/CH18019
Submitted: 12 January 2018 Accepted: 7 March 2018 Published: 9 April 2018
Abstract
Computational methods were used to investigate the stereochemical course of the extra-annular Claisen rearrangement. The stereochemical fidelity of the synthetic strategy and comparison of the optical properties support the hypothesis that the heliespirones are scalemic natural products.
References
[1] F. A. Macías, R. M. Varela, A. Torres, J. G. Molinillo, Tetrahedron Lett. 1998, 39, 427.| Crossref | GoogleScholarGoogle Scholar |
[2] F. A. Macías, J. L. G. Galindo, R. M. Varela, A. Torres, J. M. G. Molinillo, F. R. Fronczek, Org. Lett. 2006, 8, 4513.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. A. Macias, J. M. G. Molinillo, R. M. Varela, A. Torres, F. R. Fronczek, J. Org. Chem. 1994, 59, 8261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlWmsrw%3D&md5=4cb4b845594c469aa9349e7e59cc6a1aCAS |
[4] K. Chen, Y. Li, Z. Du, Z. Tao, Synth. Commun. 2015, 45, 663.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. Norcott, C. S. P. McErlean, Eur. J. Org. Chem. 2014, 5056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2jtbbO&md5=d1da3db86b78b852ab337ba0de53c47dCAS |
[6] A. Miyawaki, D. Kikuchi, M. Niki, Y. Manabe, M. Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, J. Org. Chem. 2012, 77, 8231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjsrjK&md5=9685b194f2cdd1b7e8439e24e9385811CAS |
[7] W.-J. Bai, J. C. Green, T. R. R. Pettus, J. Org. Chem. 2012, 77, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGgsbzF&md5=87a37ca681cad01b05857231e2466977CAS |
[8] C. Huang, B. Liu, Chem. Commun. 2010, 5280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslertb8%3D&md5=0331d9213dc852b679f048ab00754df0CAS |
[9] A. Francais, O. Bedel, A. Haudrechy, Tetrahedron 2008, 64, 2495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFemtrw%3D&md5=45b75f43caf9b6a66d81b4837a177f68CAS |
[10] M. C. Noe, M. A. Letavic, S. L. Snow, Org. React. 2005, 66, 109.
| 1:CAS:528:DC%2BD2MXhtF2ns7rI&md5=88333603e91ecd7cd102f9134b980b38CAS |
[11] The term scalemic denotes an unequal mixture of enantiomers.
[12] M. A. Henderson, C. H. Heathcock, J. Org. Chem. 1988, 53, 4736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVyls7o%3D&md5=f93bb5a38b59868491271fad78d930edCAS |
[13] H. J. Altenbach, in Organic Synthesis Highlights (Ed. H. J. Altenbach) 1991, pp. 111–115 (Wiley-VCH Verlag GmbH: Weinheim).
[14] H. Ito, T. Taguchi, Chem. Soc. Rev. 1999, 28, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Smtw%3D%3D&md5=b92ff5d27fbec95e46544ff3d7f241ceCAS |
[15] K. C. Majumdar, S. Alam, B. Chattopadhyay, Tetrahedron 2008, 64, 597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVent7fI&md5=8b7cc5965369a3aa1248e6430c126d20CAS |
[16] A. M. Martín Castro, Chem. Rev. 2004, 104, 2939.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Roy, B. Biswas, P. K. Sen, R. V. Venkateswaran, Tetrahedron Lett. 2007, 48, 6933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVahtrc%3D&md5=fe68e9e3cddddeeafd0e130c53283ae5CAS |
[18] S. Yamabe, S. Okumoto, T. Hayashi, J. Org. Chem. 1996, 61, 6218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVWks7s%3D&md5=9ef05142aff9f553bd82aa1f10955832CAS |
[19] Determined by 1H NMR analysis of the crude reaction mixture.
[20] F. Zhang, B. Wang, P. Prasad, R. J. Capon, Y. Jia, Org. Lett. 2015, 17, 1529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1Ghu70%3D&md5=32ee70d380ca5c74460d5cb53865c2a4CAS |
[21] P. A. Searle, T. F. Molinski, Tetrahedron 1994, 50, 9893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVWhsr0%3D&md5=78dc3ac047e53cd6de705dd7c894e931CAS |
[22] R. E. Johnson, T. de Rond, V. N. Lindsay, J. D. Keasling, R. Sarpong, Org. Lett. 2015, 17, 3474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOit7jP&md5=30c79d91c2b510602ce4bc4ac72ecbaaCAS |
[23] J. M. Finefield, D. H. Sherman, M. Kreitman, R. M. Williams, Angew. Chem. Int. Ed. 2012, 51, 4802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFClur8%3D&md5=a31b23d3fb943ab705125cd3818f7314CAS |
[24] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Yeh Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A. C. Simmonett, J. E. Subotnik, H. Lee Woodcock Iii, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer Iii, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Phys. Chem. Chem. Phys. 2006, 8, 3172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsValsbs%3D&md5=68af22c5f83413c0627c3d8e2125b67bCAS |