NMR and DFT Studies of 2-Oxo-1,2,3,4-tetrahydropyridines: Solvent and Temperature Effects
Hamid R. Memarian A B , Mahdieh Kalantari A and Hassan Sabzyan A BA Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.
B Corresponding authors. Email: memarian@sci.ui.ac.ir; sabzyan@sci.ui.ac.ir
Australian Journal of Chemistry 71(5) 380-388 https://doi.org/10.1071/CH18018
Submitted: 11 January 2018 Accepted: 19 March 2018 Published: 10 April 2018
Abstract
Various 5-carboethoxy-2-oxo-1,2,3,4-tetrahydropyridines and their corresponding oxidation products containing methoxy or nitro groups on different positions of the C4-aryl ring were synthesized and the effect of steric and electrostatic interactions of these aryl substituents on the characteristic peaks in 1H NMR spectra were investigated. In addition, the intermolecular interaction of the parent compound and its oxidized form with solvent was experimentally investigated. For this, 1H NMR spectra of these compounds at different concentrations and temperatures in [D6]DMSO and CDCl3 were investigated. For comparison of the dimerization ability of these heterocyclic compounds with different conformations, the binding electronic energies, the total enthalpies and free energies of dimerization in the gas and solution phases, and the QTAIM (quantum theory of atoms-in-molecules) analysis were determined. These interactions were also studied using density functional theory at the B3LYP/6–311++G(d,p) level. The theoretical results are in good agreement with the experimental results and indicate that the electronic effect of the methoxy and nitro groups on the C4-aryl ring influences the electron density of the heterocyclic ring via the σ bond and, consequently, the chemical shift of the heterocyclic ring protons.
References
[1] D. Wang, Y. Su, C. Jin, B. Zhu, Y. Pang, L. Zhu, J. Liu, C. Tu, D. Yan, X. Zhu, Biomacromolecules 2011, 12, 1370.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Gjsbg%3D&md5=92e29c6dcf97e052d37427acc85c3db0CAS |
[2] Y. Kou, M.-C. Koag, S. Lee, J. Am. Chem. Soc. 2015, 137, 14067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGnu7vO&md5=bc6cb033b767f981d1b48e42b3f6484bCAS |
[3] B. Qiao, T. Demars, M. Olvera de la Cruz, R. J. Ellis, J. Phys. Chem. Lett. 2014, 5, 1440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2kur0%3D&md5=ad9e1cceea6bc804ae2dd2e65c3f7745CAS |
[4] H. R. Memarian, S. Ebrahimi, H. A. Rudbari, H. Sabzyan, V. M. Nardo, J. Iran. Chem. Soc. 2016, 13, 1395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvFansL4%3D&md5=b932dc3ff90302af9110a123a92d49e1CAS |
[5] H. R. Memarian, E. Sanchooli, Magn. Reson. Chem. 2016, 54, 178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFaqt7%2FI&md5=c31dfe6ba0b0d3e2667ea24b8c7b3efaCAS |
[6] H. R. Memarian, F. Rezaie, H. Sabzyan, M. Ranjbar, J. Iran. Chem. Soc. 2014, 11, 1265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGgsbbP&md5=d474ab903d8543f36a6f6b344c6de8cbCAS |
[7] T. E. Vasquez, J. M. Bergset, M. B. Fierman, A. Nelson, J. Roth, S. I. Khan, D. J. O’Leary, J. Am. Chem. Soc. 2002, 124, 2931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsV2htrc%3D&md5=21ccbd20363c002c51a3877178d5e956CAS |
[8] S. Wallen, B. Palmer, B. Garrett, C. Yonker, J. Phys. Chem. 1996, 100, 3959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVKrsrs%3D&md5=0dc7ec021e178b33b12f42860ae73ba0CAS |
[9] S.-Y. Sheu, E. W. Schlag, H. L. Selzle, D.-Y. Yang, J. Phys. Chem. B 2009, 113, 5318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2qsLk%3D&md5=18a9b9ae5db94bda96963c5bdf8628adCAS |
[10] S. Hibi, K. Ueno, S. Nagato, K. Kawano, K. Ito, Y. Norimine, O. Takenaka, T. Hanada, M. Yonaga, J. Med. Chem. 2012, 55, 10584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslalu7%2FJ&md5=d53561812d882f9473b5b3441a792af1CAS |
[11] P. E. Sanderson, K. J. Cutrona, D. L. Dyer, J. A. Krueger, L. C. Kuo, S. D. Lewis, B. J. Lucas, Y. Yan, Bioorg. Med. Chem. Lett. 2003, 13, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVelsLY%3D&md5=670c265bc79064f6767500cc643e0c40CAS |
[12] H. R. Memarian, M. Kalantari, H. A. Rudbari, H. Sabzyan, G. Bruno, Comput. Theor. Chem. 2017, 1099, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFaitbvJ&md5=156906746d345525aaf573509ab66e33CAS |
[13] H. R. Memarian, M. Ranjbar, H. Sabzyan, M. H. Habibi, T. Suzuki, J. Mol. Struct. 2013, 1048, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Skur7E&md5=bd6411f7994b30736680254ded960f79CAS |
[14] S. Scheiner, J. Phys. Chem. B 2006, 110, 18670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVyltrw%3D&md5=c2f507f0aae325873ff1a72b196936daCAS |
[15] A. Müller, S. Leutwyler, J. Phys. Chem. A 2004, 108, 6156.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. R. Memarian, E. Sanchooli, H. A. Rudbari, G. Bruno, Aust. J. Chem. 2016, 69, 872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1KktLjJ&md5=17c0c35c8a38af7af39cb73898f350bbCAS |
[17] H. R. Memarian, M. Kalantari, J. Iran. Chem. Soc. 2017, 14, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVymsbzN&md5=b55f466b86d691183e65a4f8f273fab8CAS |
[18] H. R. Memarian, S. Ebrahimi, J. Photochem. Photobiol. Chem. 2013, 271, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Sku7jJ&md5=80cb3d1b8839462b2dfb50e46dad257aCAS |
[19] H. R. Memarain, M. Ranjbar, J. Mol. Catal. Chem. 2012, 356, 46.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOmurc%3D&md5=07f08806916475589b71af7f989da6ffCAS |
[20] H. R. Memarian, M. Soleymani, H. Sabzyan, M. Bagherzadeh, H. Ahmadi, J. Phys. Chem. A 2011, 115, 8264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVCks74%3D&md5=a3506a7e8552147400fdb2fcf708c0efCAS |
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Ciolowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 1998 (Gaussian Inc.: Pittsburg, PA).
[22] R. F. W. Bader, Atoms in Molecules: A Quantum Theory 1990 (Oxford University Press: Oxford).
[23] F. Biegler-König, J. Schönbom, AIM2000, Version 2.0 2002.
[24] T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=1d1907002f4793cf35e66f4dd9a6d496CAS |
[25] See p. 92 in: D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry 1996 (McGraw-Hill Book Company: New York, NY).
[26] D. A. McQuarrie, Statistical Mechanics 1985 (University Science Books: Herndon, VA).