Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Safe and Simple Synthesis of 1,4-Bis(trimethylsilyl)buta-1,3-diyne*

Sören Bock A and Paul J. Low A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Corresponding author. Email: paul.low@uwa.edu.au

Australian Journal of Chemistry 71(4) 307-310 https://doi.org/10.1071/CH17402
Submitted: 17 July 2017  Accepted: 22 August 2017   Published: 19 September 2017

Abstract

The buta-1,3-diyne synthon 1,4-bis(trimethylsilyl)buta-1,3-diyne (1) is an important building block for the introduction of butadiyne motifs into organic and organometallic structures. Although 1 is commonly prepared from the Hay homo-coupling of trimethylsilylacetylene (catalytic CuI/tetramethylethynylenediamine, O2, acetone), the report of a significant explosion during this preparation, likely arising from a static discharge during addition of the catalyst solution to the alkyne/acetone/O2 rich atmosphere, prompts consideration of alternative procedures. Here we report the use of the robust Navale catalyst system (CuI/N,N-dimethylaminopyridine, O2, NCMe) in the multigram-scale preparation of 1 with minimal manipulation of all-glass apparatus, greatly simplifying the process and minimising risks associated with the preparation of this useful compound.


References

[1]  P. G. Urben, Bretherick’s Handbook of Reactive Chemical Hazards (7th edn), Vol. 1 2007 (Academic Press: Oxford).

[2]  L. Brandsma, Preparative Acetylenic Chemistry (2nd edn) 1988 (Elsevier: Amsterdam).

[3]  M. Krempe, R. Lippert, F. Hampel, I. Ivanović-Burmazović, N. Jux, R. R. Tykwinski, Angew. Chem. Int. Ed. 2016, 55, 14802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslGitLfI&md5=7e508a32144008429edd4d2cf006311bCAS |

[4]  M. Tommasini, A. Milani, D. Fazzi, A. Lucotti, C. Castiglioni, J. A. Januszewski, D. Wendinger, R. R. Tykwinski, J. Phys. Chem. C 2014, 118, 26415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslCjtL7N&md5=4f54e7c0fb8ffb2b35da8c2a8f39ad53CAS |

[5]  R. R. Tykwinski, Chem. Rec. 2015, 15, 1060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOrurbI&md5=4e35ec09d935bbe9d816dc1613cc2f9bCAS |

[6]  L.-O. Pålsson, C. Wang, A. S. Batsanov, S. M. King, A. Beeby, A. P. Monkman, M. R. Bryce, Chem. – Eur. J. 2010, 16, 1470.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  D. C. Milan, O. A. Al-Owaedi, M.-C. Oerthel, S. Marqués-González, R. J. Brooke, M. R. Bryce, P. Cea, J. Ferrer, S. J. Higgins, C. J. Lambert, P. J. Low, D. Z. Manrique, S. Martin, R. J. Nichols, W. Schwarzacher, V. M. García-Suárez, J. Phys. Chem. C 2016, 120, 15666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2ltLfO&md5=b4b9f6daef2cd11d82170f974203a53cCAS |

[8]  P. Moreno-García, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. I. Bruce, P. J. Low, A. Werth, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1996, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFOrs7w%3D&md5=9cde108b7e22c3775176633ace03627dCAS |

[10]  W. Weng, T. Bartik, M. Brady, B. Bartik, J. A. Ramsden, A. M. Arif, J. A. Gladysz, J. Am. Chem. Soc. 1995, 117, 11922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlyrsbs%3D&md5=caa75fa1e59f23d2d33e37f93d1d5845CAS |

[11]  S. Bock, S. G. Eaves, M. Parthey, M. Kaupp, B. Le Guennic, J.-F. Halet, D. S. Yufit, J. A. K. Howard, P. J. Low, Dalton Trans. 2013, 42, 4240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtValur4%3D&md5=9553f47f322c7b51f7cc8dee9c9f6f4eCAS |

[12]  S. Szafert, F. Paul, W. E. Meyer, J. A. Gladysz, C. Lapinte, C. R. Chim. 2008, 11, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1yktr4%3D&md5=f08480242597139a1db268da6b9868aaCAS |

[13]  P. Tarakeshwar, P. R. Buseck, H. W. Kroto, J. Phys. Chem. Lett. 2016, 7, 1675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtVagt78%3D&md5=cfcea63be3104d9abf9d099a1a0c2ed0CAS |

[14]  A. L. K. Shi Shun, R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45, 1034.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  F. Ungeheuer, A. Fürstner, Chem. – Eur. J. 2015, 21, 11387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWns7fN&md5=155c959239ddab8f01bd90233c50f12eCAS |

[16]  K. Yin, C. Li, J. Li, X. Jia, Green Chem. 2011, 13, 591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGisb4%3D&md5=766ca019529ede3c42146fe719e3bbf3CAS |

[17]  L. D. Movsisyan, M. Franz, F. Hampel, A. L. Thompson, R. R. Tykwinski, H. L. Anderson, J. Am. Chem. Soc. 2016, 138, 1366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslCjtw%3D%3D&md5=371515c63e18c144eecb9545fd1a960aCAS |

[18]  D. C. Milan, M. Krempe, A. K. Ismael, L. D. Movsisyan, M. Franz, I. Grace, R. J. Brooke, W. Schwarzacher, S. J. Higgins, H. L. Anderson, C. J. Lambert, R. R. Tykwinski, R. J. Nichols, Nanoscale 2017, 9, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFGjtLbP&md5=b7440ada4bf6f881831115dbc58772e9CAS |

[19]  G.-L. Xu, C.-Y. Wang, Y.-H. Ni, T. G. Goodson, T. Ren, Organometallics 2005, 24, 3247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKhs78%3D&md5=bf1c0c19f66fb56f9a1a29745cb88872CAS |

[20]  L. D. Movsisyan, D. V. Kondratuk, M. Franz, A. L. Thompson, R. R. Tykwinski, H. L. Anderson, Org. Lett. 2012, 14, 3424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xoslanu7Y%3D&md5=3624be4664dfd7ab4ace1247b8657e88CAS |

[21]  H. Sahnoune, Z. Baranová, N. Bhuvanesh, J. A. Gladysz, J.-F. Halet, Organometallics 2013, 32, 6360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KktbvJ&md5=07beba1f14d5997cccfacb6c1fdd3de5CAS |

[22]  J. Stahl, J. C. Bohling, E. B. Bauer, T. B. Peters, W. Mohr, J. M. Martín-Alvarez, F. Hampel, J. A. Gladysz, Angew. Chem. Int. Ed. 2002, 41, 1871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslWmtLg%3D&md5=5cdd1db0ed036f068e9804abcb9e6d49CAS |

[23]  J. Stahl, W. Mohr, L. de Quadras, T. B. Peters, J. C. Bohling, J. M. Martín-Alvarez, G. R. Owen, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2007, 129, 8282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlaruro%3D&md5=2bff92f0a2c49b50bf15a7390e67e2ffCAS |

[24]  L. de Quadras, E. B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel, J. A. Gladysz, New J. Chem. 2007, 31, 1594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2lsr4%3D&md5=0ceb3571a681f8e40298c073bd8ed144CAS |

[25]  G. R. Owen, S. Gauthier, N. Weisbach, F. Hampel, N. Bhuvanesh, J. A. Gladysz, Dalton Trans. 2010, 39, 5260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFyktr8%3D&md5=439650270003ee2ca7d8056e9b19fa73CAS |

[26]  L. de Quadras, E. B. Bauer, W. Mohr, J. C. Bohling, T. B. Peters, J. M. Martín-Alvarez, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2007, 129, 8296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlarurs%3D&md5=b182eaf21be7a1a80b7b2c07e18e2578CAS |

[27]  G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz, Organometallics 2004, 23, 5889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsV2ntLw%3D&md5=799c2c837adbcec5b17851d6341f2a5dCAS |

[28]  G. Eglinton, W. McCrae, in Recent Advances in Organic Chemistry (Eds R. A. Raphael, E. C. Taylor, H. Wynberg) 1963, Vol. 4, pp. 225–328 (Wiley Interscience: New York, NY).

[29]  K. West, C. Wang, A. S. Batsanov, M. R. Bryce, Org. Biomol. Chem. 2008, 6, 1934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFyntLY%3D&md5=a8d9acd929960cfafe8a5278c7ac8d41CAS |

[30]  C. Wang, A. S. Batsanov, K. West, M. R. Bryce, Org. Lett. 2008, 10, 3069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Cls7s%3D&md5=a0fe096096d9094d4e57f192765f0fd9CAS |

[31]  K. West, L. N. Hayward, A. S. Batsanov, M. R. Bryce, Eur. J. Org. Chem. 2008, 5093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOgsr7L&md5=39f769cce1656d7b08bfeb9f6d4ab39cCAS |

[32]  M. I. Bruce, M. Ke, P. J. Low, B. W. Skelton, A. H. White, Organometallics 1998, 17, 3539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVygtL0%3D&md5=151698f071e3e8bcfb7346d72e9d69f5CAS |

[33]  K. West, C. Wang, A. S. Batsanov, M. R. Bryce, J. Org. Chem. 2006, 71, 8541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7nE&md5=1d4c69018fd8173c43004544a688c204CAS |

[34]  J. Lewis, B. Lin, P. R. Raithby, Transition Met. Chem. 1995, 20, 569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVGjsA%3D%3D&md5=c4b4c17f5e7faea794b223b952675c64CAS |

[35]  A. B. Holmes, C. L. D. Jennings-White, A. H. Schulthess, B. Akinde, D. R. M. Walton, J. Chem. Soc., Chem. Commun. 1979, 840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht12jsrk%3D&md5=1ebea588df733875a68eb11fbef2ff30CAS |

[36]  G. E. Jones, D. A. Kendrick, A. B. Holmes, Org. Synth. 1987, 65, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXnsFGl&md5=9b30e6ae498b991ff419bab8a5c8ab02CAS |

[37]  G. E. Jones, D. A. Kendrick, A. B. Holmes, Org. Synth. Coll. Vol. 8 1993, 63.
         | 1:STN:280:DyaK3s7kslCgsA%3D%3D&md5=8b85e7e67641e89dc960c55694a8edaaCAS |

[38]  L. Fomina, B. Vazquez, E. Tkatchouk, S. Fomine, Tetrahedron 2002, 58, 6741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVWhtbc%3D&md5=03bca6d1d3378d19dcee03160bbf4f26CAS |

[39]  P. A. Schauer, P. J. Low, Eur. J. Inorg. Chem. 2012, 390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Snsr7J&md5=fde5d49475b612dab4686d3c0aec26ceCAS |

[40]  D. F. Perepichka, S. Jeeva, Chem. Eng. News 2010, 88, 2.
         | 1:CAS:528:DC%2BC3cXhtVygsLg%3D&md5=4f5740931a67817d1610172135ff1385CAS |

[41]  B. S. Navale, R. G. Bhat, RSC Adv. 2013, 3, 5220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFSgtb4%3D&md5=e0cf62af39ee1c662d467b88b68ec01fCAS |

[42]  F. V. Singh, M. F. Z. J. Amaral, H. A. Stefani, Tetrahedron Lett. 2009, 50, 2636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslygu70%3D&md5=e5575244277fd87d67611c40c8ce4873CAS |

[43]  D. R. M. Walton, F. Waugh, J. Organomet. Chem. 1972, 37, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XktF2ksLY%3D&md5=62744458950d124e34e2b4927ef94505CAS |