Proton Conductivity of Graphene Oxide on Aging
Mohammad Razaul Karim A B D , Md. Saidul Islam A , Nurun Nahar Rabin A , Ryo Ohtani A , Masaaki Nakamura A , Michio Koinuma A and Shinya Hayami A C DA Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
B Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.
C Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
D Corresponding authors. Email: krazaul@yahoo.com; hayami@sci.kumamoto-u.ac.jp
Australian Journal of Chemistry 70(5) 642-645 https://doi.org/10.1071/CH16557
Submitted: 4 October 2016 Accepted: 23 November 2016 Published: 22 December 2016
Abstract
The aging effect on the proton conductivity of graphene oxide (GO) is investigated. Characterizations of oxygenated functional groups and measurement of the proton conductivity have been performed using freshly prepared GO and the same sample after preserving for three years under ambient conditions. Although GO retains its layered structure, a slight deviation in its powder X-ray diffraction (PXRD) pattern and Raman spectra upon aging implies some changes in the interlayer distance and functional groups. Decomposition of epoxy groups on aging has been recognised by X-ray photoelectron spectroscopy (XPS) analysis. The proton conductivity was found to be reduced by 25 % after three years of aging.
References
[1] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan, Nat. Nanotechnol. 2011, 6, 496.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaitLk%3D&md5=644474be1c4ae2cf9f6d365fed0aa3adCAS |
[2] (a) S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, J. H. Lee, Prog. Polym. Sci. 2011, 36, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVGnu7c%3D&md5=7c1e8cadad0158616381d3ceb7bbcbf3CAS |
(b) L. Yang, J. Tang, L. Li, X. Chen, F. Ai, W. Z. Yuan, L. Wang, Y. Zhang, RSC Adv. 2012, 2, 5950.
| Crossref | GoogleScholarGoogle Scholar |
[3] G. A. Voth, Acc. Chem. Res. 2006, 39, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFWitg%3D%3D&md5=07e38414821b1581d253dc84098081f7CAS |
[4] K. Raidongia, J. Huang, J. Am. Chem. Soc. 2012, 134, 16528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2mu7jK&md5=6562077b60fe4d1a83f104a53a4d21f8CAS |
[5] M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, S. Hayami, J. Am. Chem. Soc. 2013, 135, 8097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslWmsb4%3D&md5=ec069aef977c4c8152a6b4cf74e06544CAS |
[6] (a) K. Hatakeyama, M. R. Karim, C. Ogata, H. Tateishi, A. Funatsu, T. Taniguchi, M. Koinuma, S. Hayami, Y. Matsumoto, Angew. Chem. 2014, 126, 7117.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Hatakeyama, M. R. Karim, C. Ogata, H. Tateishi, T. Taniguchi, M. Koinuma, S. Hayami, Y. Matsumoto, Chem. Commun. 2014, 50, 14527.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Y. Ikeda, M. R. Karim, H. Takehira, T. Matsui, T. Taniguchi, M. Koinuma, Y. Matsumoto, S. Hayami, Chem. Lett. 2013, 42, 1412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOrt7rO&md5=2a67f4663ee74ee9d27e2fd6d4078881CAS |
(b) Y. Ikeda, M. R. Karim, H. Takehira, T. Matsui, K. Hatakeyama, Y. Murashima, T. Taniguchi, M. Koinuma, M. Nakamura, Y. Matsumoto, S. Hayami, Bull. Chem. Soc. Jpn. 2014, 87, 639.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. Tateishi, K. Hatakeyama, C. Ogata, K. Gezuhara, J. Kuroda, A. Funatsu, M. Koinuma, T. Taniguchi, S. Hayami, Y. Matsumoto, J. Electrochem. Soc. 2013, 160, F1175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSmtLfJ&md5=626cf2ecddd950764cd434a26e686cbaCAS |
[9] M. S. Islam, M. R. Karim, K. Hatakeyama, H. Takehira, R. Ohtani, M. Nakamura, M. Koinuma, S. Hayami, Chem. Asian J. 2016, 11, 2322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1CltLrJ&md5=4f45572cfec66fd6c855d1892631a6adCAS |
[10] Y. Ikeda, M. R. Karim, H. Takehira, T. Matsui, K. Hatakeyama, Y. Murashima, T. Taniguchi, M. Koinuma, M. Nakamura, Y. Matsumoto, S. Hayami, Bull. Chem. Soc. Jpn. 2014, 87, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Cqsrg%3D&md5=7d4d9a310b1fca1e0019cdef737fc3caCAS |
[11] A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Smu7c%3D&md5=e484314052ec908abbbd8d47f077da85CAS |
[12] (a) M. C. Hsiao, S. H. Liao, M. Y. Yen, P. I. Liu, N. W. Pu, C. A. Wang, C. C. M. Ma, ACS Appl. Mater. Interfaces 2010, 2, 3092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jurrM&md5=d02f85cfa0098def6aeec71d7cfaabedCAS |
(b) M. R. Karim, Y. Ikeda, T. Ide, S. Sugimoto, K. Toda, Y. Kitamura, T. Ihara, T. Matsui, T. Taniguchi, M. Koinuma, Y. Matsumoto, S. Hayami, New J. Chem. 2014, 38, 2120.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. M. Paniago, M. A. Pimenta, Appl. Phys. Lett. 2006, 88, 163106.
| Crossref | GoogleScholarGoogle Scholar |
[14] N. I. Kovtyukhova, Y. Wang, A. Berkdemir, R. Cruz-Silva, M. Terrones, V. H. Crespi, T. E. Mallouk, Nat. Chem. 2014, 6, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKms7rI&md5=d137a8a0240bcf9468e1a8bf07f57f92CAS |
[15] M. R. Karim, H. Shinoda, M. Nakai, K. Hatakeyama, H. Kamihata, T. Matsui, T. Taniguchi, M. Koinuma, K. Kuroiwa, M. Kurmoo, Y. Matsumoto, S. Hayami, Adv. Funct. Mater. 2013, 23, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GksrfP&md5=bc2ea50f0439d2c05ceffdbbe0448708CAS |
[16] M. R. Karim, M. S. Islam, K. Hatakeyama, M. Nakamura, R. Ohtani, M. Koinuma, S. Hayami, J. Phys. Chem. C 2016, 120, 21976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12mtbzO&md5=723f16854da33d9e5da20cfb203b94abCAS |