Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

S–S Bond Formation: Nanocatalysts in the Oxidative Coupling of Thiols

Lotfi Shiri A B , Arash Ghorbani-Choghamarani A B and Mosstafa Kazemi A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Basic Sciences, Ilam University, PO Box 69315-516, Ilam, Iran.

B Corresponding authors. Email: lshiri47@gmail.com; arashghch58@yahoo.com; Mosstafakazemi@gmail.com




Lotfi Shiri was born in Baghdad (Iraq). He obtained his B.Sc. in applied chemistry from Mazandaran University, and his M.Sc. in organic chemistry from the same university in 2001 under the supervision of Professor Mahmood Tajbakhsh. He received his Ph.D. degree under the supervision of Professor Ramin Ghorbani-Vaghei in 2013. His current interests are in the synthesis of N-halo reagents and heterogeneous catalysts and their applications in organic synthesis.



Arash Ghorbani-Choghamarani finished his B.S. studies in applied chemistry at Bu-Ali Sina University, Hamadan, Iran (2001) and received his M.Sc. in organic chemistry under the supervision of Professor Mohammad Ali Zolfigol (2003). He subsequently began his Ph.D. studies in organic chemistry with the same supervisor in same university. During the Ph.D. program, he completed a sabbatical fellowship with Professor Robert H.E. Hudson at the University of Western Ontario, London, Ontario, Canada (September 2005 to September 2006). He obtained his Ph.D. degree in 2007. He then joined the Department of Chemistry at Ilam University, Ilam, Iran, as a faculty member. He is currently Associate Professor of Organic Chemistry.



Mosstafa Kazemi was born in Ilam, Iran. He received his M.S. degree in organic chemistry from Ilam University in 2013. Currently he is working towards his Ph.D. degree under the supervision of Assistant Professor Lotfi Shiri in the Department of Chemistry at Ilam University. His current interests are focussed on the development of new strategies for the synthesis of heterogeneous catalysts, in the form of nanoparticles, and their application in the synthesis of organosulfur and heterocyclic compounds in line with the concept of modern green synthetic chemistry.

Australian Journal of Chemistry 70(1) 9-25 https://doi.org/10.1071/CH16318
Submitted: 26 October 2015  Accepted: 21 June 2016   Published: 18 August 2016

Abstract

Compounds containing sulfur–sulfur bonds (often called disulfides or more specifically disulfanes) are arguably one of the most valuable functional groups in organic synthetic chemistry. They exist extensively in nature, in which they exhibit important biological activities. Furthermore, a diverse range of natural and synthetic disulfides have been discovered that have many applications as pharmaceutical and agriculture chemicals as well as synthetic intermediates. Since thiols are commercially accessible or easily synthesizable materials and their choice as starting materials is widely reported for the synthesis of organic sulfur compounds, unsurprisingly the oxidative coupling of thiols is the best and simplest route for the preparation of disulfides. In recent times, nanocatalysts have shown excellent catalytic activity and reusability in the oxidation of thiols to disulfides. Herein, we summarize the recently reported breakthroughs in the use of nanocatalysts for the oxidative coupling of thiols to their corresponding disulfides, with the goal of stimulating further progress in this field.


References

[1]  M. Kazemi, L. Shiri, J. Sulfur Chem. 2015, 36, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCnsr7P&md5=7018e81a41fb92e28bcc70b0385be273CAS |

[2]  M. Kazemi, L. Shiri, H. Kohzadi, Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKltL3J&md5=7b0cb035cf23117f78bd1bd3ca659a06CAS |

[3]  M. Kazemi, L. Shiri, H. Kohzadi, Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1aktbvE&md5=b1d30483acd1b33004c14ae07e7b5a0dCAS |

[4]  Y. Kanda, T. Fukuyama, J. Am. Chem. Soc. 1993, 115, 8451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsF2qtrk%3D&md5=6e5fcc7e13c4d4721a429e1779b74b52CAS |

[5]  G. Pattenden, A. J. Shuker, J. Chem. Soc. Perkin Trans. 1 1992, 1, 1215.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Ramadas, N. Srinivasan, Synth. Commun. 1995, 25, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVymtbo%3D&md5=0e3cd5b014c25f3a20867c3002d0e02fCAS |

[7]  E. Zysman-Colman, D. N. Harpp, J. Org. Chem. 2005, 70, 5964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlKjur4%3D&md5=5277055974b5490a8414e7582b7f8b8dCAS | 16018692PubMed |

[8]  L. Teuber, Sulfur Rep. 1992, 31, 257.

[9]  E. Block, Angew. Chem. Int. Ed. Engl. 1992, 31, 1135.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. F. Gilbert, Methods Enzymol. 1995, 251, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFOks70%3D&md5=1b6fb2583743eccf59e4088228adb761CAS | 7651233PubMed |

[11]  N. A. Eckardt, Plant Cell 2006, 18, 1782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Kjt74%3D&md5=59465e0c08133927fcce7fbe78f01827CAS |

[12]  S. J. Behroozi, W. Kim, K. S. Gates, J. Org. Chem. 1995, 60, 3964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt12rsLg%3D&md5=e12809f87d1a98d14038f7cb5d85e1afCAS |

[13]  S. J. Behroozi, W. Kim, J. Dannaldson, K. S. Gates, Biochemistry 1996, 35, 1768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1KrsA%3D%3D&md5=fa59b655b9ad7439f980bd63901007b2CAS | 8639657PubMed |

[14]  W. J. Wedemeyer, E. Welker, M. Narayan, H. A. Scheraga, Biochemistry 2000, 39, 4207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsl2hu7Y%3D&md5=44c4bfb068e1a58690d40ff615a460c2CAS | 10757967PubMed |

[15]  L. Wang, J. Kristensen, D. E. Ruffner, Bioconjug. Chem. 1998, 9, 749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslyju7g%3D&md5=f766d6929bd96dbf56aa741f9efeac64CAS | 9815169PubMed |

[16]  G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXotl2ksA%3D%3D&md5=86cb7a50e7ffab115900bb3c25f5e7ffCAS | 13650640PubMed |

[17]  I. Rahman, W. MacNee, Free Radic. Biol. Med. 2000, 28, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlWgtbo%3D&md5=4f9af9ae31c5e39d83050b4cf8bda9a2CAS | 10924859PubMed |

[18]  S. V. Amonkar, A. Banerji, Science 1971, 174, 1343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtV2iu7Y%3D&md5=af13d45a4ed7c0b6f59f82a299e15d7bCAS | 5135721PubMed |

[19]  J. S. Yang, L. F. Kok, Y. H. Lin, T. C. Kuo, J. L. Yang, C. C. Lin, G. W. Chen, W. W. Huang, Anticancer Res. 2006, 26, 219.
         | 1:CAS:528:DC%2BD28Xhs1aht7o%3D&md5=8b92e8ef0d4b916568f096d62347ae3eCAS | 16475702PubMed |

[20]  E. T. Ayodele, A. A. Olajire, O. S. Amuda, S. O. Oladoye, Bull. Chem. Soc. Ethiop. 2003, 17, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVCqtb8%3D&md5=a1139a6cf621466a6b78e99e29fb8647CAS |

[21]  M. C. Stensmyr, I. Urru, I. Collu, M. Celander, B. S. Hansson, A. M. Angioy, Nature 2002, 420, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSitLg%3D&md5=f003528fdb1eff8c61e5e24527634ec0CAS | 12478279PubMed |

[22]  L. Bischoff, C. David, L. Martin, H. Meudal, B.-P. Roques, M.-C. Fournie-Za-luski, J. Org. Chem. 1997, 62, 4848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFKksbg%3D&md5=890e806e084374f48f48f71216a44c44CAS |

[23]  F. Hosseinpoor, H. Golchoubian, Catal. Lett. 2006, 111, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaksbfO&md5=3a53156bf065ae207b90eae0f792926dCAS |

[24]  M. H. Ali, M. McDermott, Tetrahedron Lett. 2002, 43, 6271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKhs7Y%3D&md5=2b14774be3fe6bccefe5ff960ed38d87CAS |

[25]  S. N. Maiti, P. Spevak, M. P. Singh, R. G. Micetich, Synth. Commun. 1988, 18, 575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslGrsg%3D%3D&md5=01a7f7dfaa390e4f5698e6431bf4555dCAS |

[26]  K. Ramadas, N. Srinivasan, Synth. Commun. 1995, 25, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVymtbo%3D&md5=0e3cd5b014c25f3a20867c3002d0e02fCAS |

[27]  K. Hemalatha, G. Madhumitha, A. Kajbafvala, N. Anupama, R. Sompalle, S. M. Roopan, J Nanomater. 2013, 2013, 341015.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  L. Shiri, A. Ghorbani-Choghamarani, M. Kazemi, Aust. J. Chem. 2016, 69, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsVOgtr4%3D&md5=3bdd7df83abb642e0a4c7359436d3f30CAS |

[29]  J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem. 2006, 4, 2337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsV2jtr8%3D&md5=b6ad34291951bcdc75198d1ad0d901bfCAS | 16763676PubMed |

[30]  J. W. Jun, J. S. Choi, J. Cheon, Angew. Chem. 2006, 118, 3492.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. Sabet, E. Kolvari, N. Koukabi, A. Fakhraee, M. Ramezanpour, G. Bahmannia, J. Sulfur Chem. 2015, 36, 300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVWisLw%3D&md5=7f82a111b8d3d641901132630fa13a15CAS |

[32]  J. Yan, H. Tao, M. Zeng, J. Tao, S. Zhang, Z. Yan, W. Wang, J. Wang, Chin. J. Catal. 2009, 30, 856.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2itr%2FP&md5=39b578f263ea29f5d8967a62ececb7d2CAS |

[33]  A. Saxena, A. Kumar, S. Mozumdar, J. Mol. Catal. A: Chem. 2007, 269, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVemtro%3D&md5=c7aaa2576b7a1a50a2ee9b07edc9630dCAS |

[34]  K. Niknam, D. Saberi, Tetrahedron Lett. 2009, 50, 5210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGmsLg%3D&md5=c15d89bc04039122235a5673cb6bc90dCAS |

[35]  A. Ghorbani-Choghamarani, B. Tahmasbi, F. Arghand, S. Faryadi, RSC Adv. 2015, 5, 92174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12ksLrL&md5=a3dc0394b25e43449a53af5c47153ccbCAS |

[36]  A. Ghorbani-Choghamarani, B. Ghasemi, Z. Safari, Go. Azadi, Catal. Commun. 2015, 60, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWhs7fF&md5=bce9342c2545ffba6f951ac2afacb74dCAS |

[37]  A. Ghorbani-Choghamarani, Z. Darvishnejad, M. Norouzi, Appl. Organomet. Chem. 2015, 29, 170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFKqtw%3D%3D&md5=37f5977546dc2db0bc31f976102b8e44CAS |

[38]  A. M. Kulkarni, U. V. Desai, K. S. Pandit, M. A. Kulkarnia, P. P. Wadgaonkar, RSC Adv. 2014, 4, 36702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1SlurbE&md5=13efe0b9676f13cd20a874d933f9be7aCAS |

[39]  M. Bagherzadeh, M. M. Haghdoost, F. M. Moghaddam, B. K. Foroushani, S. Saryazdi, E. Payab, J. Coord. Chem. 2013, 66, 3025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOjt7vL&md5=807048ba4f1dc7f8f8ae4c6655b60dbbCAS |

[40]  G. Singh, P. K. Khatria, S. K. Gangulyb, S. L. Jain, RSC Adv. 2014, 4, 29124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhsb%2FF&md5=6fc32f50a94684ea0038784b84380871CAS |

[41]  A. Ghorbani-Choghamarani, Z. Darvishnejad, B. Tahmasbi, Inorg. Chim. Acta 2015, 435, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Sru7nL&md5=63ce223ca379d33633d963b13c1cd995CAS |

[42]  N. Koukabi, E. Kolvari, M. A. Zolfigol, A. Khazaei, B. S. Shaghasemi, B. Fasahatib, Adv. Synth. Catal. 2012, 354, 2001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1amsbs%3D&md5=a2462dcd6f526cfb24d942f0a7844cf7CAS |

[43]  S. Rostamnia, A. Nuri, H. Xin, A. Pourjavadi, S. H. Hosseini, Tetrahedron Lett. 2013, 54, 3344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFGrs7o%3D&md5=0f57acbb8e2bd8dd0679e4fb10ef0eedCAS |

[44]  A. Sabet, E. Kolvari, N. Koukabi, A. Fakhraee, M. Ramezanpour, G. Bahmannia, J. Sulfur Chem. 2015, 36, 300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVWisLw%3D&md5=7f82a111b8d3d641901132630fa13a15CAS |

[45]  A. Ghorbani-Choghamarani, H. Rabiei, B. Tahmasbi, B. Ghasemi, F. Mardi, Res. Chem. Intermed. 2016, 42, 5723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xltl2isw%3D%3D&md5=08105eb6a78990bbba69b3df516cab9cCAS |

[46]  M. Nikoorazm, A. Ghorbani-Choghamarani, H. Mahdavi, S. M. Esmaeili, Microporous Mesoporous Mater. 2015, 211, 174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWlsLw%3D&md5=6069bdee40996c925868386ab7830474CAS |

[47]  M. Hajjami, L. Shiri, A. Jahanbakhshi, Appl. Organomet. Chem. 2015, 29, 668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Ciu7bI&md5=4695d1a7deec3750a35298bf09d36650CAS |

[48]  M. Nikoorazm, A. Ghorbani-Choghamarani, F. Ghorbani, H. Mahdavi, Z. Karamshahi, J. Porous Mater. 2015, 22, 261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVOqu7jM&md5=63953f7c427109c13b44f88b68bf0bd3CAS |

[49]  M. Nikoorazm, A. Ghorbani-Choghamarani, N. Noori, J. Porous Mater. 2015, 22, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFChsrg%3D&md5=c1989eea2dae16ca8968165de4632919CAS |

[50]  M. Hajjami, S. Rahmani, J. Porous Mater. 2015, 22, 1265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKqu77K&md5=5589dc84796a3a8cf73b4e53be460b41CAS |

[51]  M. Nikoorazm, A. Ghorbani-Choghamarani, N. Noori, Appl. Organometal. Chem. 2015, 29, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWns78%3D&md5=6308742028dfb45135fd3020ad1d92d4CAS |

[52]  F. Rajabi, T. Kakeshpour, M. R. Saidi, Catal. Commun. 2013, 40, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCgsLfK&md5=50b7088d8e42f940d261d223abb3fea4CAS |

[53]  M. Hajjami, Z. Yousofvand, Catal. Lett. 2015, 145, 1733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFChtb3M&md5=2e7b692d5b8a1ce958da8ff0275a7789CAS |

[54]  A. K. Patra, A. Dutta, M. Pramanik, M. Nandi, H. Uyama, A. Bhaumik, ChemCatChem 2014, 6, 220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOiurfO&md5=266fbeb8ede753b9979b6f9be0352837CAS |

[55]  A. Dhakshinamoorthy, S. Navalon, D. Sempere, M. Alvaro, H. Garcia, ChemCatChem 2013, 5, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GhurvI&md5=5429b9703a1086e52cf66c6b18a8933cCAS |

[56]  A. Corma, T. Rodenas, M. J. Sabater, Chem. Sci. 2012, 3, 398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslemsQ%3D%3D&md5=ad615e307ea4a3ab7b3cd179617c4e3aCAS |

[57]  T. Tabari, H. Tavakkoli, Chin. J. Catal. 2012, 33, 1791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Sqtbs%3D&md5=3820edb0987703bc4d91b40df049bb2aCAS |

[58]  A. Dhakshinamoorthy, A. Primo, I. Esteve-Adell, M. Alvaro, H. Garcia, ChemCatChem 2015, 7, 776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOiu74%3D&md5=dead93e6e25569e28ecffe1c6bcba156CAS |

[59]  E. Tabrizian, A. Amoozadeh, S. Rahmani, RSC Adv. 2016, 6, 21854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xisleisb8%3D&md5=050e5189cf2d15ada5e662da91045094CAS |