Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Pentanidium-Catalyzed Asymmetric Phase-Transfer Conjugate Addition: Prediction of Stereoselectivity via DFT Calculations and Docking Sampling of Transition States, and Origin of Stereoselectivity

Choon Wee Kee A and Ming Wah Wong A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.

B Corresponding author. Email: chmwmw@nus.edu.sg

Australian Journal of Chemistry 69(9) 983-990 https://doi.org/10.1071/CH16225
Submitted: 8 April 2016  Accepted: 24 May 2016   Published: 16 June 2016

Abstract

Density functional theory (DFT) study, at the M06–2X/6–311+G(d,p)//M06–2X/6–31G(d,p) level, was carried out to examine the catalytic mechanism and origin of stereoselectivity of pentanidium-catalyzed asymmetric phase-transfer conjugate addition. We employed a hybrid approach by combining automated conformation generation through molecular docking followed by subsequent DFT calculation to locate various possible transition states for the enantioselective conjugate addition. The calculated enantioselectivity (enantiomeric excess), based on the key diastereomeric C–C bond-forming transition states, is in good accord with experimental result. Non-covalent interaction analysis of the key transition states reveals extensive non-covalent interactions, including aromatic interactions, hydrogen bonds, and non-classical C–H⋯O interactions between the pentanidium catalyst and substrates. The origin of stereoselectivity was analysed using a strain-interaction model.


References

[1]  D. Leow, C.-H. Tan, in Chiral Bicyclic Guanidine, Bis-Guanidinium, and Pentanidium Catalysts in Organic Synthesis: Topics in Heterocyclic Chemistry 2016, pp. 1–27 (Springer: Berlin).

[2]  T. Ma, X. Fu, C. W. Kee, L. Zong, Y. Pan, K.-W. Huang, C.-H. Tan, J. Am. Chem. Soc. 2011, 133, 2828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWju74%3D&md5=17082bbbf08cd8bfcae9b26d1f8506f4CAS | 21314097PubMed |

[3]  Y. Yang, F. Moinodeen, W. Chin, T. Ma, Z. Jiang, C.-H. Tan, Org. Lett. 2012, 14, 4762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12it73O&md5=4e63f84437d1e839c0b5eb45304ee878CAS | 22946651PubMed |

[4]  L. Zong, X. Ban, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2014, 53, 11849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWitrrO&md5=6cbb08567dbb57903f15a3dc10ba2bbfCAS |

[5]  L. Zong, S. Du, K. F. Chin, C. Wang, C.-H. Tan, Angew. Chem. Int. Ed. 2015, 54, 9390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOrtb3O&md5=21ccf3c7ca9c614e1574e0fee2a47b6eCAS |

[6]  S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlagtL4%3D&md5=0c548b5e74972f0c2fbbdc17b2655cc9CAS |

[7]  A. Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 900.
         | 1:CAS:528:DC%2BD1cXltFSktLg%3D&md5=1d4b5e6f9a53437368cce1b211d94e38CAS |

[8]  S. M. Walter, F. Kniep, E. Herdtweck, S. M. Huber, Angew. Chem. Int. Ed. 2011, 50, 7187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFCks78%3D&md5=7274d266ecc1d4f5a7a16c2316c05621CAS |

[9]  F. Kniep, S. H. Jungbauer, Q. Zhang, S. M. Walter, S. Schindler, I. Schnapperelle, E. Herdtweck, S. M. Huber, Angew. Chem. Int. Ed. 2013, 52, 7028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1SjsLo%3D&md5=0c6480f36ac77303e66b91a2e80f15e3CAS |

[10]  S. H. Jungbauer, S. M. Walter, S. Schindler, L. Rout, F. Kniep, S. M. Huber, Chem. Commun. 2014, 6281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFynu7g%3D&md5=a227ee3ab14ac0b9c156cf201abb98feCAS |

[11]  W. He, Y.-C. Ge, C.-H. Tan, Org. Lett. 2014, 16, 3244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptl2hur4%3D&md5=5d72cd190e6f3f8465119fb7ebf28e9aCAS | 24904974PubMed |

[12]  Y. Takeda, D. Hisakuni, C.-H. Lin, S. Minakata, Org. Lett. 2015, 17, 318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKqtQ%3D%3D&md5=aea07b1126a9a36867083b66d940c158CAS | 25551775PubMed |

[13]  C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2001, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFOqsr0%3D&md5=fd20603f5cf7d9789a879e601cc3e255CAS |

[14]  M. L. Waters, Curr. Opin. Chem. Biol. 2002, 6, 736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFequ74%3D&md5=fcd6a6187a8ffd8f0f57318ef6c6ef11CAS | 12470725PubMed |

[15]  E. H. Krenske, K. N. Houk, Acc. Chem. Res. 2013, 46, 979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyns7jL&md5=823bfc2b49b0cf8842a967cd54092069CAS | 22827883PubMed |

[16]  M. Rabinovitz, Y. Cohen, M. Halpern, Angew. Chem. Int. Ed. Engl. 1986, 25, 960.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=cc861ed842819ae5ac3119d096252f86CAS |

[18]  Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2iug%3D%3D&md5=88374b0df5546cfa038d84b39bca4133CAS | 18186612PubMed |

[19]  B. Cho, C.-H. Tan, M. W. Wong, Org. Biomol. Chem. 2011, 9, 4550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGgtLY%3D&md5=d2586c2d9119fc936d30bd2f0e58ce76CAS | 21509383PubMed |

[20]  B. Cho, C.-H. Tan, M. W. Wong, J. Org. Chem. 2012, 77, 6553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVejtb3N&md5=3258aa5d4689fc5dcab3f48ab301b593CAS | 22788383PubMed |

[21]  M. W. Wong, E. A. M. Ng, Aust. J. Chem. 2014, 67, 1100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFynsb3J&md5=0c8dda64706c1e01903340ff3ace5811CAS |

[22]  B Cho, M. W. Wong, Molecules 2015, 20, 15108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVelsrjK&md5=e37b2de2afdf06961c90f3f36d4219daCAS | 26295222PubMed |

[23]  G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
         | Crossref | GoogleScholarGoogle Scholar | 20331284PubMed |

[24]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision D.01) 2009 (Gaussian, Inc.: Wallingford CT).

[25]  C. Y. Legault, CYLview 1.0.562 2012 (Université de Sherbrooke: Quebec). Available at http://www.cylview.org (accessed 25 March 2015).

[26]  T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
         | Crossref | GoogleScholarGoogle Scholar | 22162017PubMed |

[27]  E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvF2jtL8%3D&md5=6f069f7ec1ee936303aca17086bafabaCAS |

[28]  O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455.
         | 1:CAS:528:DC%2BD1MXhsFGnur3O&md5=0e79752f5ab11d884b0ef639f2c07364CAS | 19499576PubMed |

[29]  D. J. Harriman, G. F. Deleavey, A. Lambropoulos, G. Deslongchamps, Tetrahedron 2007, 63, 13032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKrsrfI&md5=48a4c2adb6daf03d116ba66233173af8CAS |

[30]  D. J. Harriman, A. Lambropoulos, G. Deslongchamps, Tetrahedron Lett. 2007, 48, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Kr&md5=bd320f1525a534170d24ee37175dd2beCAS |

[31]  D. J. Harriman, G. Deslongchamps, J. Mol. Model. 2006, 12, 793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOit7fE&md5=f118c4ab5f714becff5d8880b9fedadbCAS | 16496192PubMed |

[32]  D. J. Harriman, G. Deslongchamps, J. Comput. Aided Mol. Des. 2004, 18, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFakurfJ&md5=73db4731409288aaee014e70a31599feCAS | 15595458PubMed |

[33]  M. Suenaga, FACIO 19.1.6 – 3D Graphics Program for Molecular Modeling and Visualization 2016 (Department of Chemistry, Kyushu University: Fukuoka, Japan). Available at http://zzzfelis.sakura.ne.jp/ (accessed 12 May 2016).

[34]  E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVahsLY%3D&md5=416aa487dfb48d68bad504f74cb70cedCAS | 20394428PubMed |

[35]  J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625.
         | Crossref | GoogleScholarGoogle Scholar | 21516178PubMed |

[36]  W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis12nsrg%3D&md5=8581270343e5bde7097d49bbe8f8faf5CAS | 8744570PubMed |

[37]  H. Yang, M. W. Wong, J. Am. Chem. Soc. 2013, 135, 5808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFSkurk%3D&md5=d3fcaff81c367508e5bac1cbba0fd897CAS | 23517148PubMed |

[38]  R. C. Johnston, P. H.-Y. Cheong, Org. Biomol. Chem. 2013, 11, 5057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFaltbzL&md5=0042b737a7e947cc78c0614ede2bff13CAS | 23824256PubMed |

[39]  J. Ran, M. W. Wong, Aust. J. Chem. 2009, 62, 1062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFensb%2FM&md5=4560fc1beed069d4575feab66cc25774CAS |

[40]  R. Gordillo, J. Carter, K. N. Houk, Adv. Synth. Catal. 2004, 346, 1175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot12hsb4%3D&md5=bf1331c89ddd13e46198fb0de3bb748eCAS |

[41]  S. Nagase, S. K. Morokuma, J. Am. Chem. Soc. 1978, 100, 1666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhs12ntbo%3D&md5=e64193b327ea584f0c8474cf40098152CAS |

[42]  D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 10646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Klsbc%3D&md5=c578e223d93b02d8a2e5ec9fdf066282CAS | 17685614PubMed |

[43]  W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCjsrw%3D&md5=daa4a100d613e2af2973da20fbe17b29CAS | 20490400PubMed |

[44]  X. Han, R. Lee, T. Chen, J. Luo, Y. Lu, K.-W. Huang, Sci. Rep. 2013, 3, 2557.
         | 23990028PubMed |

[45]  M. J. Ajitha, K.-W. Huang, Org. Biomol. Chem. 2015, 13, 10981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2nurnK&md5=45dada69ec2a2b1a17f2c712d7114775CAS | 26393538PubMed |

[46]  T. J. Seguin, S. E. Wheeler, ACS Catal. 2016, 6, 2681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktFejsLw%3D&md5=1a6c19ff8e2e5ec74d81ea228f4c07a0CAS |