Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Biomimetic Synthetic Approach to the Frondosins*

Kevin K. W. Kuan A , Aylin M. C. Hirschvogel A and Jonathan H. George A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: jonathan.george@adelaide.edu.au

Australian Journal of Chemistry 69(12) 1420-1423 https://doi.org/10.1071/CH16218
Submitted: 4 April 2016  Accepted: 2 June 2016   Published: 20 July 2016

Abstract

The frondosins are a family of five marine sponge-derived meroterpenoids. We propose that the 6–7 ring system common to each of the frondosins is biosynthesized via ring expansion of a 6–6 ring system. Compelling evidence in favour of this proposal was obtained in the form of a biomimetic synthesis of the frondosin 6–7 ring system, which features a highly stereo- and regio-selective ring expansion cascade reaction as the key step.


References

[1]  A. D. Patil, A. J. Freyer, L. Killmer, P. Offen, B. Carte, A. J. Jurewicz, R. K. Johnson, Tetrahedron 1997, 53, 5047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Wju7c%3D&md5=1ab085d67196790d75cee297f14d72caCAS |

[2]  Y. F. Hallock, J. H. Cardellina, M. R. Boyd, Nat. Prod. Lett. 1998, 11, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVygtrs%3D&md5=649865a036cde4276b219473b9d3f62eCAS |

[3]  (a) M. Inoue, A. J. Frontier, S. J. Danishefsky, Angew. Chem. Int. Ed. 2000, 39, 761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVGktb8%3D&md5=d0872e35405d9a9aeed2b486d813f23dCAS |
      (b) M. Inoue, M. W. Carson, A. J. Frontier, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 1878.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. C. Hughes, D. Trauner, Angew. Chem. Int. Ed. 2002, 41, 1569.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. J. Kerr, A. C. Willis, B. L. Flynn, Org. Lett. 2004, 6, 457.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. C. Hughes, D. Trauner, Tetrahedron 2004, 60, 9675.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) I. Martinez, P. E. Alford, T. V. Ovaska, Org. Lett. 2005, 7, 1133.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) X. Li, R. E. Kyne, T. V. Ovaska, Org. Lett. 2006, 8, 5153.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) B. M. Trost, Y. Hu, D. B. Horne, J. Am. Chem. Soc. 2007, 129, 11781.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) J. P. Olson, H. M. L. Davies, Org. Lett. 2008, 10, 573.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) X. Li, A. Keon, J. A. Sullivan, T. V. Ovaska, Org. Lett. 2008, 10, 3287.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) G. Mehta, N. S. Likhite, Tetrahedron Lett. 2008, 49, 7113.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) T. V. Ovaska, J. A. Sullivan, S. I. Ovaska, J. B. Winegrad, J. D. Fair, Org. Lett. 2009, 11, 2715.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) G. Mehta, N. S. Likhite, Tetrahedron Lett. 2009, 50, 5263.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) K.-S. Masters, B. L. Flynn, Org. Biomol. Chem. 2010, 8, 1290.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) M. Reiter, S. Torsell, S. Lee, D. W. C. MacMillan, Chem. Sci. 2010, 1, 37.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) D. Garayalde, K. Kruger, C. Nevado, Angew. Chem. Int. Ed. 2011, 50, 911.
         | Crossref | GoogleScholarGoogle Scholar |
      (q) D. W. Lee, R. K. Pandey, S. Lindeman, W. A. Donaldson, Org. Biomol. Chem. 2011, 9, 7742.
         | Crossref | GoogleScholarGoogle Scholar |
      (r) J. Zhang, L. Li, Y. Wang, W. Wang, J. Xue, Y. Li, Org. Lett. 2012, 14, 4528.
         | Crossref | GoogleScholarGoogle Scholar |
      (s) D. R. Laplace, B. Verbraeken, K. Van Hecke, J. M. Winne, Chem. – Eur. J. 2014, 20, 253.
         | Crossref | GoogleScholarGoogle Scholar |
      (t) E. Z. Oblak, M. D. VanHeyst, J. Li, A. J. Wiemer, D. L. Wright, J. Am. Chem. Soc. 2014, 136, 4309.
         | Crossref | GoogleScholarGoogle Scholar |
      (u) M. D. VanHeyst, D. L. Wright, Eur. J. Org. Chem. 2015, 1387.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. P. Pepper, K. K. W. Kuan, J. H. George, Org. Lett. 2012, 14, 1524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOhtbc%3D&md5=e1c7ac83530576a277a3c0db3e42f056CAS | 22360673PubMed |

[5]  S. K. Jackson, K.-L. Wu, T. R. R. Pettus, in Biomimetic Organic Synthesis (Eds E. Poupon, B. Nay) 2011, Vol. 2, Ch. 20, pp. 723–749 (Wiley-VCH: Weinheim).

[6]  K. K. W. Kuan, H. P. Pepper, W. M. Bloch, J. H. George, Org. Lett. 2012, 14, 4710.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12it7zF&md5=1f5f475ff3a1ae9dd31a795cc0e1fb48CAS |

[7]  L. Minale, R. Riccio, G. Sodano, Tetrahedron Lett. 1974, 15, 3401.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. H. George, M. McArdle, J. E. Baldwin, R. M. Adlington, Tetrahedron 2010, 66, 6321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlaqsLk%3D&md5=d279c82290746a6a8e6d86efc6ea15f1CAS |

[9]  P. Djura, D. B. Stierle, B. Sullivan, D. J. Faulkner, E. Arnold, J. Clardy, J. Org. Chem. 1980, 45, 1435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslOlur0%3D&md5=3ed173e6c1da81b2e5cb4e72c89f4ffbCAS |

[10]  (a) J. H. George, J. E. Baldwin, R. M. Adlington, Org. Lett. 2010, 12, 2394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVahs7o%3D&md5=13d5e9753612462b99d9c9cf7805a419CAS | 20394432PubMed |
      (b) A. W. Markwell-Heys, K. K. W. Kuan, J. H. George, Org. Lett. 2015, 17, 4228.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. P. Willis, K. A. Z. Gogins, L. L. Miller, J. Org. Chem. 1981, 46, 3215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXks1Wlur4%3D&md5=9178ec694781ed621c0a082f6d271443CAS |

[12]  For a related ring-expansion reaction, see: M. Zhou, H.-C. Geng, H.-B. Zhang, K. Dong, W.-G. Wang, X. Du, X.-N. Li, F. He, H.-B. Qin, Y. Li, J.-X. Pu, H.-D. Sun, Org. Lett. 2013, 15, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gsL3O&md5=67446405b4f4b3c8a72831405fd08b1bCAS | 23265286PubMed |

[13]  (a) For reviews of o-quinone methide chemistry, see: R. W. Van De Water, T. R. R. Pettus, Tetrahedron 2002, 58, 5367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVegtbg%3D&md5=3f97c39eba1e9f3904a074da117cfb9dCAS |
      (b) T. P. Pathak, M. S. Sigman, J. Org. Chem. 2011, 76, 9210.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. J. Willis, C. D. Bray, Chem. – Eur. J. 2012, 18, 9160.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W.-J. Bai, J. G. David, Z.-G. Feng, M. G. Weaver, K.-L. Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47, 3655.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014, 53, 3854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Kktbk%3D&md5=c438dad1f315dcf11bde648383aa54beCAS |

[15]  R. N. Misra, B. R. Brown, W.-C. Han, D. N. Harris, A. Hedberg, M. L. Webb, S. E. Hall, J. Med. Chem. 1991, 34, 2882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlGrsbo%3D&md5=ffe103d6d71e016102903d0837b7d014CAS | 1910091PubMed |