Poly(3-hexylthiophene) End-Functionalization via Quenching Resulting in Heteroatom-Bond Formation
Lauren J. Kang A and Christine K. Luscombe A B CA Department of Chemistry, University of Washington, Seattle, WA 98195-2120, USA.
B Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA.
C Corresponding author. Email: luscombe@uw.edu
Australian Journal of Chemistry 69(7) 701-704 https://doi.org/10.1071/CH15790
Submitted: 16 December 2015 Accepted: 20 February 2016 Published: 17 March 2016
Abstract
End-functionalized poly(3-hexylthiophene) (P3HT) has contributed to continued advancements in conjugated polymer applications, especially within organic electronics. P3HT synthesized using Kumada catalyst-transfer polymerization (KCTP) has many favourable attributes such as controlled molecular weight, high regioregularity, and narrow dispersity. With the addition of reactive end-groups, P3HT plays an important role in advancing the development of hybrid materials and preparation of block copolymers. Exploring methods of end-functionalization that result in heteroatom-bond formation, giving a non-carbon atom bonded to the terminal thiophene, could help control and understand the p–n junction of hybrid materials. This research highlight focuses on the development of a novel and facile way of end-functionalizing P3HT with chalcogens.
References
[1] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules 2001, 34, 4324.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1SnsrY%3D&md5=18237fc15cc62d3017e410c96c682795CAS |
[2] A. Yokoyama, R. Miyakoshi, T. Yokozawa, Macromolecules 2004, 37, 1169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGnug%3D%3D&md5=549bc2b1f36848e56d5a565c743174b8CAS |
[3] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvF2qsrg%3D&md5=180917e5b4da1ef3c6b5a031869b7d13CAS |
[4] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFaqtr4%3D&md5=36b388d06dc6e60eecd33f4624fb558fCAS | 17626879PubMed |
[5] I. Osaka, R. D. McCullough, Acc. Chem. Res. 2008, 41, 1202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCmsr%2FO&md5=421f569dbeb337981ab0b1d433793cbbCAS | 18729480PubMed |
[6] A. Salleo, R. J. Kline, D. M. DeLongchamp, M. L. Chabinyc, Adv. Mater. 2010, 22, 3812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlu73J&md5=989c090dce5413d9138c5d03d4ec2356CAS | 20607787PubMed |
[7] M. He, F. Qiu, Z. Lin, J. Mater. Chem. 2011, 21, 17039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtLvP&md5=fd1d8838d7becf77df5ada3218b9cec0CAS |
[8] K. Okamoto, C. K. Luscombe, Polym. Chem. 2011, 2, 2424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2nsrbE&md5=3c4566f176fce5c5e26f67edd83ea8c8CAS |
[9] A. Marrocchi, D. Lanari, A. Facchetti, L. Vaccaro, Energy Environ. Sci. 2012, 5, 8457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WrsLfI&md5=48d5db8a6f9c2312a42f1092e51b785cCAS |
[10] Q. Zhang, T. P. Russell, T. Emrick, Chem. Mater. 2007, 19, 3712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVWktrs%3D&md5=5010bcb37790d71957cb1ae0dea40bfcCAS |
[11] B. P. Khanal, E. R. Zubarev, Angew. Chem. Int. Ed. 2009, 48, 6888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtrrK&md5=3e3e89b3330143f9238009c4a5334527CAS |
[12] M. He, F. Qiu, Z. Lin, J. Phys. Chem. Lett. 2013, 4, 1788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFCksbk%3D&md5=85ffd511ecfe23ee65fc8653ff17694bCAS | 26283110PubMed |
[13] R. A. Krüger, T. J. Gordon, T. Baumgartner, T. C. Sutherland, ACS Appl. Mater. Interfaces 2011, 3, 2031.
| Crossref | GoogleScholarGoogle Scholar | 21563756PubMed |
[14] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, P. Yang, Nano Lett. 2010, 10, 334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGkur3E&md5=610ee3bfb4a719b6aee2ec12cc737002CAS | 20000808PubMed |
[15] H. A. Bronstein, C. K. Luscombe, J. Am. Chem. Soc. 2009, 131, 12894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWntbrM&md5=1e132b628a051198d76196063acb013fCAS | 19737013PubMed |
[16] A. Smeets, K. Van den Bergh, J. De Winter, P. Gerbaux, T. Verbiest, G. Koeckelberghs, Macromolecules 2009, 42, 7638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqtL%2FN&md5=d383967f0e71802db1a15640d63fdce3CAS |
[17] V. Senkovskyy, M. Sommer, R. Tkachov, H. Komber, W. T. S. Huck, A. Kiriy, Macromolecules 2010, 43, 10157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVegu7rK&md5=ec3bb34eb53dcb539e130397eb762be9CAS |
[18] N. Doubina, A. Ho, A. K.-Y. Jen, C. K. Luscombe, Macromolecules 2009, 42, 7670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Srt70%3D&md5=7c6c8b54b6164f4a56c9d9ac0ff7d6baCAS |
[19] V. Senkovskyy, R. Tkachov, T. Beryozkina, H. Komber, U. Oertel, M. Horecha, V. Bocharova, M. Stamm, S. A. Gevorgyan, F. C. Krebs, A. Kiriy, J. Am. Chem. Soc. 2009, 131, 16445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWmur3O&md5=2efa22fd45cc6aaafc86668373c4b850CAS | 19860410PubMed |
[20] N. Doubina, S. A. Paniagua, A. V. Soldatova, A. K. Y. Jen, S. R. Marder, C. K. Luscombe, Macromolecules 2011, 44, 512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVymtA%3D%3D&md5=c2aca9719bc59122034f16ccae89dd7dCAS |
[21] A. Smeets, P. Willot, J. De Winter, P. Gerbaux, T. Verbiest, G. Koeckelberghs, Macromolecules 2011, 44, 6017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVKru78%3D&md5=2288f4bd3236a4ce8588f6302cff6abfCAS |
[22] M. Jeffries-El, G. Sauvé, R. D. McCullough, Macromolecules 2005, 38, 10346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SrsbnE&md5=925fd97c92edbeeae34f6755cc760788CAS |
[23] B. M. W. Langeveld-Voss, R. A. J. Janssen, A. J. H. Spiering, J. L. J. van Dongen, E. C. Vonk, H. A. Claessens, Chem. Commun. 2000, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlCltg%3D%3D&md5=e703c409c48778727a051d420e66123eCAS |
[24] M. Jeffries-EL, G. Sauvé, R. D. McCullough, Adv. Mater. 2004, 16, 1017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslehsbs%3D&md5=11d4cf5478c393486c5db5eb9396d5b3CAS |
[25] W. M. Kochemba, S. M. Kilbey, D. L. Pickel, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFWisrs%3D&md5=27673ce5537f98697b0e491bdc017641CAS |
[26] R. H. Lohwasser, M. Thelakkat, Macromolecules 2011, 44, 3388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVaqtbk%3D&md5=9cc7bb5faad674ee91a6dac0cf93ef08CAS |
[27] W. M. Kochemba, D. L. Pickel, B. G. Sumpter, J. Chen, S. M. Kilbey, Chem. Mater. 2012, 24, 4459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2ktLrO&md5=10c51f34d47b4d100b812a36977ca173CAS |
[28] Z. Mao, K. Vakhshouri, C. Jaye, D. A. Fischer, R. Fernando, D. M. DeLongchamp, E. D. Gomez, G. Sauvé, Macromolecules 2013, 46, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyksbzM&md5=94aca16ec7b9e94886998476bab88acbCAS |
[29] J. Liu, R. D. McCullough, Macromolecules 2002, 35, 9882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFyhtbY%3D&md5=16aa3886acffff91243291c438abe7a7CAS |
[30] R. H. Lohwasser, M. Thelakkat, Macromolecules 2010, 43, 7611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2ktLnO&md5=706677e42bd9e31605d45c770f28334cCAS |
[31] L. Zhang, K. Hashimoto, K. Tajima, Polym. J. 2012, 44, 1145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ajtLvO&md5=66bc02bb24f4663f8b8b1e7703f659f7CAS |
[32] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ahsrc%3D&md5=0b7b3e2128c31e961223958aff14cb20CAS | 15826011PubMed |
[33] F. Monnaie, W. Brullot, T. Verbiest, J. De Winter, P. Gerbaux, A. Smeets, G. Koeckelberghs, Macromolecules 2013, 46, 8500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgt77E&md5=247a37cf47073a73cf05188181cbfa88CAS |
[34] E. B. Pentzer, F. A. Bokel, R. C. Hayward, T. Emrick, Adv. Mater. 2012, 24, 2254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2hurY%3D&md5=5b3553d1da89427071d906e255960ac8CAS | 22451039PubMed |
[35] K. Okamoto, C. K. Luscombe, Chem. Commun. 2014, 50, 5310.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFCjsr0%3D&md5=baf616fef8bc7872cd0718e23a2b656bCAS |