Iminoacyl Alkyl Complexes of Zirconium Supported by a Ferrocene-Linked Diphosphinoamide Ligand Scaffold*
Nathan R. Halcovitch A and Michael D. Fryzuk A BA Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
B Corresponding author. Email: fryzuk@chem.ubc.ca
Australian Journal of Chemistry 69(5) 555-560 https://doi.org/10.1071/CH15763
Submitted: 8 December 2015 Accepted: 26 January 2016 Published: 16 February 2016
Abstract
Zirconium dialkyl complexes of the general formula fc(NPiPr2)2ZrR2 (where fc = 1,1′-ferrocenyl, R = CH3, CH2Ph, CH2tBu, tBu) have been synthesized and characterized via the addition of alkyl lithium or potassium benzyl derivatives to the dichloride complex fc(NPiPr2)2ZrCl2(THF). Addition of 2,6-dimethylphenylisocyanide to these alkyl derivatives generates the corresponding mono iminoacyl alkyl zirconium complexes. On thermolysis, the iminoacyl moiety containing a benzyl substituent undergoes rearrangement to yield a new complex that contains an alkene-amido fragment. Mechanistic studies point to a 1,2 hydrogen shift as the rate-determining step.
References
[1] G. W. Coates, P. D. Hustad, S. Reinartz, Angew. Chem. Int. Ed. 2002, 41, 2236.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVyqsrk%3D&md5=cdc349e57139bf0e5574c77bc6026e34CAS |
[2] H. H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger, R. M. Waymouth, Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFeltr8%3D&md5=c7f4297791e19c77871770edc03f2ec8CAS |
[3] P. Wipf, in Metallocenes in Regio- and Stereoselective Synthesis 2005, Vol. 8, pp. 1–25 (Springer: Berlin).
[4] E. J. Kuhlmann, J. J. Alexander, Coord. Chem. Rev. 1980, 33, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXks1arsQ%3D%3D&md5=3436b07edade6c13b133473ccff51771CAS |
[5] G. Fachinetti, G. Fochi, C. Floriani, J. Chem. Soc., Dalton Trans. 1977, 1946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFaktr4%3D&md5=4e691d8aa1d75338a9b23b5955fa7a53CAS |
[6] L. Giannini, A. Caselli, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, N. Re, A. Sgamellotti, J. Am. Chem. Soc. 1997, 119, 9709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Ohs7o%3D&md5=193175e2f424cfd19eb54b4a12a05116CAS |
[7] L. Chen, W.-L. Nie, J. Paradies, G. Kehr, R. Froehlich, K. Wedeking, G. Erker, Organometallics 2006, 25, 5333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1alsL8%3D&md5=acf645e129f206e9ea5e9c7531a3a74dCAS |
[8] L. D. Durfee, A. K. McMullen, I. P. Rothwell, J. Am. Chem. Soc. 1988, 110, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFalsbo%3D&md5=343115951048d24c2491cc525066c7ecCAS |
[9] J. H. Hardesty, T. A. Albright, S. Kahlal, Organometallics 2000, 19, 4159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Whs7Y%3D&md5=d72a26fd039b57c0d234682aa73e63abCAS |
[10] L. D. Durfee, I. P. Rothwell, Chem. Rev. 1988, 88, 1059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlWju7w%3D&md5=9ecbdc6dde53f421d5b3c31d445da9d3CAS |
[11] M. J. Scott, S. J. Lippard, Organometallics 1997, 16, 5857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1amtg%3D%3D&md5=25462ab7c539e0ba478085f31bd2675cCAS |
[12] T.-G. Ong, D. Wood, G. P. A. Yap, D. S. Richeson, Organometallics 2002, 21, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslyjtL4%3D&md5=5d6f9395b6b64a384bc0339e9a4a757fCAS |
[13] R. Fernandez-Galan, A. Antinolo, F. Carrillo-Hermosilla, I. Lopez-Solera, A. Otero, A. Serrano-Laguna, E. Villasenor, Organometallics 2012, 31, 8360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCltbbM&md5=081dd4d07b1a68f43d33f93756032389CAS |
[14] T. G. Ong, G. P. A. Yap, D. S. Richeson, Organometallics 2003, 22, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFA%3D&md5=2d5d4d1bdb3e5f5b18dc7b0b78fe2002CAS |
[15] F. De Angelis, A. Sgamellotti, N. Re, S. Fantacci, Organometallics 2005, 24, 1867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlKgt78%3D&md5=a89675306b8e2b0f92fff11762183983CAS |
[16] F. De Angelis, S. Fantacci, A. Sgamellotti, N. Re, Theor. Chem. Acc. 2003, 110, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFelu70%3D&md5=2cbbde03a3a9adb5c059eb63616161e1CAS |
[17] S. Fantacci, F. De Angelis, A. Sgamellotti, N. Re, Organometallics 2002, 21, 4090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOjtLc%3D&md5=738c5c05e13a7ff1e30842f71514126fCAS |
[18] R. K. Thomson, L. L. Schafer, Organometallics 2010, 29, 3546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVagsLs%3D&md5=29f023928a5618a625159e3f6505779eCAS |
[19] J. R. Hagadorn, J. Arnold, Organometallics 1994, 13, 4670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFWrsL4%3D&md5=616a4ae255e69f19bc4a6a3947b5f299CAS |
[20] A. Antinolo, R. Fernandez-Galan, B. Gallego, A. Otero, S. Prashar, A. M. Rodriguez, Eur. J. Inorg. Chem. 2003, 2626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFelt7g%3D&md5=5ae03d390f4002029baf55474c341ffbCAS |
[21] J. Cano, M. Sudupe, P. Royo, M. E. G. Mosquera, Organometallics 2005, 24, 2424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFClsLc%3D&md5=a446b56f59ada513c49e0d8d0279db05CAS |
[22] R. Fandos, A. Meetsma, J. H. Teuben, Organometallics 1991, 10, 2665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFClur0%3D&md5=b85d243e11a74d45e9b2a8012d46b9f3CAS |
[23] A. S. Guram, R. F. Jordan, J. Org. Chem. 1993, 58, 5595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVymuw%3D%3D&md5=a9fa0be80bcd2a2ee3f1dc4de77ed28aCAS |
[24] L. P. Spencer, M. D. Fryzuk, J. Organomet. Chem. 2005, 690, 5788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CmtLvL&md5=a9cfa467f6106e6a201d1e197078cdb5CAS |
[25] B. G. Cooper, C. M. Fafard, B. M. Foxman, C. M. Thomas, Organometallics 2010, 29, 5179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFKjt74%3D&md5=b87a205ec6ab8cf3b458087d5b55bc9eCAS |
[26] A. Shafir, J. Arnold, Organometallics 2003, 22, 567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1aktQ%3D%3D&md5=517216b1f4fe6e5665f8d79bf5853937CAS |
[27] A. Shafir, M. P. Power, G. D. Whitener, J. Arnold, Organometallics 2001, 20, 1365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtl2ktbY%3D&md5=a84b6e109aa4069b75cfdac9fb353cf0CAS |
[28] H. Noeth, M. Schmidt, Organometallics 1995, 14, 4601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVKrsLw%3D&md5=703e17e5e2524d9a79df5190d6efa2e1CAS |
[29] A. V. Firth, J. C. Stewart, A. J. Hoskin, D. W. Douglas, J. Organomet. Chem. 1999, 591, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Smsrg%3D&md5=8059b200088c737ef7a5ef1e86dfcb97CAS |
[30] M. B. Harney, R. J. Keaton, J. C. Fettinger, L. R. Sita, J. Am. Chem. Soc. 2006, 128, 3420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSqtL4%3D&md5=a2b88335502f3ba77f2a817adf7570f8CAS | 16522123PubMed |
[31] M. H. Chisholm, L. S. Tan, J. C. Huffman, J. Am. Chem. Soc. 1982, 104, 4879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xls1eitLY%3D&md5=31b08123392345ff5b7a81585d0b5badCAS |
[32] Z. P. Lu, G. P. A. Yap, D. S. Richeson, Organometallics 2001, 20, 706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1entg%3D%3D&md5=8512456428b63a55509fe4a60be14f7bCAS |
[33] F. Basuli, J. Tomaszewski, J. C. Huffman, D. J. Mindiola, Organometallics 2003, 22, 4705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVCqs7w%3D&md5=4873c15226d386a9a2059d8f54471e6cCAS |
[34] A. A. Trifonov, D. M. Lyubov, E. A. Fedorova, G. K. Fukin, H. Schumann, S. Muhle, M. Hummert, M. N. Bochkarev, Eur. J. Inorg. Chem. 2006, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Sntrk%3D&md5=76e23d6be80f5a082f660b7808c8de1bCAS |
[35] D. R. Swanson, E. Negishi, Organometallics 1991, 10, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Cgu74%3D&md5=848d9d1ee0595c6b0d8260b76e53e375CAS |
[36] A. K. McMullen, I. P. Rothwell, J. C. Huffman, J. Am. Chem. Soc. 1985, 107, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXpsFOmug%3D%3D&md5=bf42f759e6638bda20e23931fda1119dCAS |
[37] L. R. Chamberlain, L. D. Durfee, P. E. Fanwick, L. Kobriger, S. L. Latesky, A. K. Mcmullen, I. P. Rothwell, K. Folting, J. C. Huffman, W. E. Streib, R. Wang, J. Am. Chem. Soc. 1987, 109, 390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjtlagsQ%3D%3D&md5=6526282b3d6d443447e93619517f4948CAS |
[38] L. Giannini, E. Solari, S. Deangelis, T. R. Ward, C. Floriani, A. Chiesivilla, C. Rizzoli, J. Am. Chem. Soc. 1995, 117, 5801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1yqsL0%3D&md5=c1505ea850d711a30e927fb85f86c2acCAS |
[39] D. P. Steinhuebel, P. Fuhrmann, S. J. Lippard, Inorg. Chim. Acta 1998, 270, 527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslWqsrs%3D&md5=a887e6c022dd020e4222900ccffa188fCAS |
[40] M. G. Thorn, J. Lee, P. E. Fanwick, I. P. Rothwell, J. Chem. Soc., Dalton Trans. 2002, 3398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFOht7k%3D&md5=1dcf17755f873c1b6887fd19e55e6deeCAS |
[41] A. Sebastian, P. Royo, P. Gomez-Sal, C. Ramirez de Arellano, Eur. J. Inorg. Chem. 2004, 3814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyhtrg%3D&md5=234d7ff0fee4e66877f4145e2f3da592CAS |
[42] P. Perrotin, I. El-Zoghbi, P. O. Oguadinma, F. Schaper, Organometallics 2009, 28, 4912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWntbfE&md5=4e028c4b269993698103ed22dea93ae8CAS |
[43] S. M. Beshouri, D. E. Chebi, P. E. Fanwick, I. P. Rothwell, J. C. Huffman, Organometallics 1990, 9, 2375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFOktro%3D&md5=f2ff5eaf4c1b752b408e794a84f43662CAS |