Enhanced Catalytic Activity of Carbon Nanotubes for the Oxidation of Cyclohexane by Filling with Fe, Ni, and FeNi alloy Nanowires
Xixian Yang A B , Yuhang Li B , Hao Yu B D , Xuchun Gui C , Hongjuan Wang B , Hongyu Huang A and Feng Peng B DA Integrated Technology Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
B School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
C School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510640, China.
D Corresponding authors. Email: yuhao@scut.edu.cn; cefpeng@scut.edu.cn
Australian Journal of Chemistry 69(6) 689-695 https://doi.org/10.1071/CH15516
Submitted: 21 August 2015 Accepted: 10 November 2015 Published: 1 December 2015
Abstract
Fe-, Ni-, and alloyed FeNi-filled carbon nanotubes (Fe@CNT, Ni@CNT, and FeNi@CNT) were prepared by a general strategy using a mixture of xylene and dichlorobenzene as carbon source, and ferrocene, nickelocene, and their mixture as catalysts. By tailoring the composition of the carbon precursor, the filling ratio and the wall thickness of metal@CNT could be controlled. For the catalytic oxidation of cyclohexane in liquid phase with molecular oxygen as oxidant, the highest activity was obtained over Fe@CNT synthesized from pure dichlorobenzene. However, Ni filling did not improve the activity of CNTs. The effects of metal filling, wall thickness, and defects on catalytic activity were investigated to determine the structure–activity relationship of the filled CNTs. The enhanced catalytic performance can be attributed to a combined contribution of thin walls of CNTs and confined electron-donating metals, which are favourable to electron transfer on the surfaces of CNTs. The modification of the electronic structure of CNTs upon Fe and Ni fillers insertion was elucidated through density functional theory calculations.
References
[1] D. Zhao, J. Zhang, X. Li, Z. Shen, J. Alloys Compd. 2010, 505, 712.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgtL3I&md5=0a8e9dc644d5f4cbd5589e9fd7fefb86CAS |
[2] P. K. Tyagi, M. K. Singh, A. Misra, U. Palnitkar, D. S. Misra, E. Titus, N. Ali, G. Cabral, J. Gracio, M. Roy, S. K. Kulshreshtha, Thin Solid Films 2004, 469, 127.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Guo, X. Pan, H. Gao, Z. Yang, J. Zhao, X. Bao, Chem. – Eur. J. 2010, 16, 5379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWrtLk%3D&md5=423b491259870ea3bb49aa6f1a8423d8CAS | 20376823PubMed |
[4] R. Lv, F. Kang, D. Cai, C. Wang, J. Gu, K. Wang, D. Wu, J. Phys. Chem. Solids 2008, 69, 1213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFOls7s%3D&md5=7c235cce1e5e55f4b58df431baa75623CAS |
[5] X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao, Nat. Mater. 2007, 6, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1egsLc%3D&md5=0280061602993c97b7ca641fe3a287e7CAS | 17515914PubMed |
[6] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang, Adv. Mater. 2004, 16, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1ejsbk%3D&md5=2b143ecd4138823c73fb095e9dd44bd6CAS |
[7] D. Li, L. Dai, S. Huang, A. W. H. Mau, Z. L. Wang, Chem. Phys. Lett. 2000, 316, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVagsQ%3D%3D&md5=36d28640e01675fa9a50d8d3fd6e31daCAS |
[8] I. Mönch, A. Meye, A. Leonhardt, K. Krämer, R. Kozhuharova, T. Gemming, M. P. Wirth, B. Büchner, J. Magn. Magn. Mater. 2005, 290, 276.
| Crossref | GoogleScholarGoogle Scholar |
[9] V. Gupta, R. K. Kotnala, Angew. Chem., Int. Ed. 2012, 51, 2916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyjtb4%3D&md5=c4c4d12d6d3466080d4a9aede293f7ffCAS |
[10] X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, D. Y. Song, Carbon 2004, 42, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsF2qsLk%3D&md5=0b104655108473fc9d7d46a2c7aff78cCAS |
[11] E. Castillejos, P.-J. Debouttière, L. Roiban, A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K. Philippot, B. Chaudret, P. Serp, Angew. Chem., Int. Ed. 2009, 48, 2529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlOls7o%3D&md5=d54079dfe750394b770893aa9d9135c9CAS |
[12] E. E. Santiso, M. K. Kostov, A. M. George, M. B. Nardelli, K. E. Gubbins, Appl. Surf. Sci. 2007, 253, 5570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksV2hsLo%3D&md5=b7db3c26d9ab0ed60988bbbe878a37a3CAS |
[13] T. Yumura, M. Kertesz, S. Iijima, Chem. Phys. Lett. 2007, 444, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFegt74%3D&md5=c5ebeecb91005ffb43b45efcf5b1db4aCAS |
[14] P. Serp, E. Castillejos, ChemCatChem 2010, 2, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1altg%3D%3D&md5=31cb48e93328d3403049e555c1208151CAS |
[15] X. Pan, X. Bao, Chem. Commun. 2008, 6271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKgs77M&md5=afe6fed91d12d7c264156bb8cf184ffcCAS |
[16] W. Chen, Z. Fan, X. Pan, X. Bao, J. Am. Chem. Soc. 2008, 130, 9414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2ktbw%3D&md5=4cf716a8d0c96d23c74f9c396afa5c22CAS | 18576652PubMed |
[17] W. Chen, X. Pan, X. Bao, J. Am. Chem. Soc. 2007, 129, 7421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVClsLo%3D&md5=9fa6ff9216f7141a19c558850ec22e45CAS | 17508751PubMed |
[18] W. Chen, X. Pan, M. Willinger, D. S. Su, X. Bao, J. Am. Chem. Soc. 2006, 128, 3136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Citbg%3D&md5=4164b2b439849fa74cda91f3c1441ca2CAS | 16522081PubMed |
[19] J. Zhang, J.-O. Müller, W. Zheng, D. Wang, D. Su, R. Schlögl, Nano Lett. 2008, 8, 2738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1CjsL8%3D&md5=9f78328e92daaa7adbbe392cd6b2fbeeCAS | 18672941PubMed |
[20] Z. Shi, Z. Dong, J. Sun, F. Zhang, H. Yang, J. Zhou, X. Zhu, R. Li, Chem. Eng. J. 2014, 237, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWjtLzO&md5=4a277f2514438ea81b2ba64ca58b8f00CAS |
[21] H. Yang, S. Song, R. Rao, X. Wang, Q. Yu, A. Zhang, J. Mol. Catal. A: Chem. 2010, 323, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCmurk%3D&md5=6f65126b8b01756d7ba0521e389fbc6aCAS |
[22] H. Zhang, X. Pan, J. Liu, W. Qian, F. Wei, Y. Huang, X. Bao, ChemSusChem 2011, 4, 975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCku78%3D&md5=08488e2feda2d00c782f77fd904eec18CAS | 21365773PubMed |
[23] J. Guan, X. Pan, X. Liu, X. Bao, J. Phys. Chem. C 2009, 113, 21687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lurzJ&md5=f086b996ded7203c2e6db63298d24ab9CAS |
[24] H. Chen, D. S. Sholl, J. Am. Chem. Soc. 2004, 126, 7778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFelsbc%3D&md5=39b68a95b685cc3ec9238927ceb344ffCAS | 15212516PubMed |
[25] H. Yu, F. Peng, J. Tan, X. Hu, H. Wang, J. Yang, W. Zheng, Angew. Chem., Int. Ed. 2011, 50, 3978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCiu7g%3D&md5=e4b59f3b7f687f303900d3e158761ff8CAS |
[26] R. Sheldon, J. Kochi, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes 1981 (Academic Press: New York, NY).
[27] X. Yang, H. Yu, F. Peng, H. Wang, ChemSusChem 2012, 5, 1213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVehtrc%3D&md5=184750b772436d6aea3752b9db5e7691CAS | 22488987PubMed |
[28] J. Deng, L. Yu, D. Deng, X. Chen, F. Yang, X. Bao, J. Mater. Chem. A 2013, 1, 14868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOkt77M&md5=2ab6a89a690fc21e99dcd7096cfd8e59CAS |
[29] D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem., Int. Ed. 2013, 52, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSlsL7P&md5=71da54a180c804314a1ffc937819c690CAS |
[30] C. E. Cava, R. Possagno, M. C. Schnitzler, P. C. Roman, M. M. Oliveira, C. M. Lepiensky, A. J. G. Zarbin, L. S. Roman, Chem. Phys. Lett. 2007, 444, 304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Sgu7k%3D&md5=9044123f37bb7f2f3d242795502cdb23CAS |
[31] C. Müller, A. Leonhardt, M. C. Kutz, B. Büchner, H. Reuther, J. Phys. Chem. C 2009, 113, 2736.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. Chopra, P. D. Kichambare, R. Andrews, B. J. Hinds, Nano Lett. 2002, 2, 1177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wns7s%3D&md5=d315828995ba41cc352b692ab1476d5aCAS |
[33] R. Lv, S. Tsuge, X. Gui, K. Takai, F. Kang, T. Enoki, J. Wei, J. Gu, K. Wang, D. Wu, Carbon 2009, 47, 1141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVCmtLg%3D&md5=28bb66e5f8d876e36cdf39de0c826c8cCAS |
[34] B. Delley, J. Chem. Phys. 2000, 113, 7756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslOntro%3D&md5=e449b20db0d34dc90f25a44e00a4fcc3CAS |
[35] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=e2557f66801ae4bc524755e675b3410eCAS | 10062328PubMed |
[36] B. Delley, Phys. Rev. B 2002, 66, 155125.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Grimme, J. Comput. Chem. 2006, 27, 1787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFenu7bO&md5=02cb93407efad9a59bbdc3d21afb81f0CAS | 16955487PubMed |
[38] F. L. Hirshfeld, Theor. Chim. Acta 1977, 44, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksVCgsLg%3D&md5=1b6c23116c46a3d0c2ad72da0688bd05CAS |
[39] R. Lv, F. Kang, W. Wang, J. Wei, J. Gu, K. Wang, D. Wu, Carbon 2007, 45, 1433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGkt78%3D&md5=e8c3bc33e48dff47ca0519ff4600646fCAS |
[40] Z. Kang, E. Wang, B. Mao, Z. Su, L. Gao, L. Niu, H. Shan, L. Xu, Appl. Catal., A 2006, 299, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCnsL%2FO&md5=43bd09e5f9ae33e10bb611bb344bfa0aCAS |
[41] X. Yang, H. Wang, J. Li, W. Zheng, R. Xiang, Z. Tang, H. Yu, F. Peng, Chem. – Eur. J. 2013, 19, 9818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVCjtLk%3D&md5=44b2d50c020615d8611075b78e235480CAS | 23788127PubMed |
[42] Y. Cao, H. Yu, F. Peng, H. Wang, ACS Catal. 2014, 4, 1617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFOmtr8%3D&md5=906bb2a16e5b72bb85978082187276d7CAS |
[43] J. Luo, F. Peng, H. Yu, H. Wang, W. Zheng, ChemCatChem 2013, 5, 1578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaisL4%3D&md5=9069068acf5182cc3398b9f56fa4d53dCAS |
[44] S. Liao, Y. Chi, H. Yu, H. Wang, F. Peng, ChemCatChem 2014, 6, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFantA%3D%3D&md5=f5493bec3959ef3db1e01b87e55a8767CAS |
[45] H. B. Michaelson, J. Appl. Phys. 1977, 48, 4729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXjtVOhuw%3D%3D&md5=9d1561974f55d46c2fb0e0a4a64743f9CAS |
[46] R. Lv, F. Kang, D. Zhu, Y. Zhu, X. Gui, J. Wei, J. Gu, D. Li, K. Wang, D. Wu, Carbon 2009, 47, 2709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2hur0%3D&md5=aab29d5189c600cf1a83038c96b38bceCAS |
[47] T. Cui, R. Lv, F. Kang, Q. Hu, J. Gu, K. Wang, D. Wu, Nanoscale Res. Lett. 2010, 5, 941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFelurw%3D&md5=28a7b5958c48e355a99029ada23261b5CAS | 20672122PubMed |