Self-Generated Macrochannel-Structure TiO2/g-C3N4 with High Photocatalytic Activity
Gaopeng Dai A B C , Tao Wang A , Suqin Liu A B , Ying Liang A and Wen Xu AA Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, China.
B Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053, China.
C Corresponding author. Email: dgp2000@126.com
Australian Journal of Chemistry 69(4) 478-484 https://doi.org/10.1071/CH15428
Submitted: 16 July 2015 Accepted: 5 October 2015 Published: 10 November 2015
Abstract
TiO2/g-C3N4 composites with macrochannel structure were successfully synthesised without using templates by the simple dropwise addition of tetrabutyl titanate containing graphitic carbon nitride (g-C3N4) to a water-ethanol mixed solution, which was then calcined at 400°C. The as-prepared samples were characterised by X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy. The photocatalytic activities of the samples were evaluated by the photocatalytic degradation of methyl orange in an aqueous medium under visible-light and simulated sunlight irradiation. The results show that the g-C3N4 content in TiO2/g-C3N4 composites plays an important role in the formation of macrochannels. Only samples containing less than 10 wt-% of g-C3N4 exhibit macrochannel structure. TiO2/g-C3N4 composites with macrochannel structure displayed enhanced photocatalytic activity. G-C3N4 content exhibited an obvious influence on photocatalytic performance, and the optimal loading of g-C3N4 was 10 wt-%. The enhanced photocatalytic activity could be attributed to the synergetic effects of the macrochannel structure, the large specific surface area, and the heterojunction between TiO2 and g-C3N4. The main oxidative species responsible for the photodegradation of pollutants were further confirmed by the trapping experiments.
References
[1] A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtL3P&md5=66ce16d81c199d04b69a656e1ca82827CAS | 19088977PubMed |
[2] M. Mehrjouei, S. Müller, D. Möller, Chem. Eng. J. 2015, 263, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFarsrbN&md5=1d7b9055d91564ef3ab709423679d5adCAS |
[3] D. F. Xu, B. Cheng, S. W. Cao, J. G. Yu, Appl. Catal. B 2015, 164, 380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ylsrzI&md5=9d3e0500a633122ee0df04947f0d2dd0CAS |
[4] G. P. Dai, S. Q. Liu, Y. Liang, H. J. Liu, Z. C. Zhong, J. Mol. Catal. A: Chem. 2013, 368–369, 38.
| Crossref | GoogleScholarGoogle Scholar |
[5] X. F. Yang, J. L. Qin, Y. Li, R. X. Zhang, H. Tang, J. Hazard. Mater. 2013, 261, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrtLbE&md5=423ce4708b6aae76670cfbc612a7f218CAS |
[6] S. W. Leong, A. Razmjou, K. Wang, K. Hapgood, X. W. Zhang, H. T. Wang, J. Membr. Sci. 2014, 472, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOlsb%2FF&md5=3132f03652ed0a3524966a949f6c4ee0CAS |
[7] N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang, H. M. Cheng, Adv. Funct. Mater. 2011, 21, 1717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltleis7w%3D&md5=8df252f24c9719e3b973d0ebb6553f5bCAS |
[8] T. Sreethawong, S. Laehsalee, S. Chavadej, Int. J. Hydrogen Energy 2008, 33, 5947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gur%2FP&md5=8ad9404d6af1e411e41af4b2a522a51eCAS |
[9] J. W. Shi, X. Yan, H. J. Cui, X. Zong, M. L. Fu, S. H. Chen, L. Z. Wang, J. Mol. Catal. A: Chem. 2012, 356, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOmu74%3D&md5=b8db224f99257b2c1939cfc8e963065cCAS |
[10] L. C. Liu, X. R. Gu, C. Z. Sun, H. Li, Y. Deng, F. Gao, L. Dong, Nanoscale 2012, 4, 6351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVejsLfE&md5=ac02056813ce4fa456fcc7e2bca078efCAS |
[11] X. F. Yang, J. L. Qin, Y. Jiang, R. Li, Y. Li, H. Tang, RSC Advances 2014, 4, 18627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslynsbk%3D&md5=d74b0582ca5dec7b78165d010db90a3fCAS |
[12] S. W. Cao, J. G. Yu, J. Phys. Chem. Lett. 2014, 5, 2101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosl2qt7Y%3D&md5=7a85697c6e5aa054aa97925d19a04356CAS |
[13] Z. H. Chen, P. Sun, B. Fan, Q. Liu, Z. G. Zhang, X. M. Fang, Appl. Catal. B 2015, 170, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVaktbjN&md5=fe8492a4f5cfb7585e93f591d3d3c545CAS |
[14] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWrsL7J&md5=45f29145db4dfb5d16a5c429702a907fCAS |
[15] X. C. Wang, S. Blechert, M. Antonietti, ACS Catal. 2012, 2, 1596.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Xu, J. Yan, Y. G. Xu, Y. H. Song, H. M. Li, J. X. Xia, C. J. Huang, H. L. Wan, Appl. Catal. B 2013, 129, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmsL3L&md5=fc6143e35996edf021027ef66bfcad22CAS |
[17] J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqsr7I&md5=d3f246bd1054d8ca643e821f79c9db83CAS |
[18] S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale 2014, 6, 4830.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWmtbY%3D&md5=86c9abe94761197dd52c35f034c8c990CAS | 24664127PubMed |
[19] J. Y. Zhang, Y. H. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. G. Yu, ACS Appl. Mater. Interfaces 2013, 5, 10317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVymu7zO&md5=d6b8467770a583e0c745d0066175326bCAS |
[20] F. Z. Su, S. C. Mathew, G. Lipner, X. Z. Fu, M. Antonietti, S. Blechert, X. C. Wang, J. Am. Chem. Soc. 2010, 132, 16299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOnsLjP&md5=3bf92c6ebec55bddc4c6bd5982aca248CAS |
[21] J. X. Wang, J. Huang, H. L. Xie, A. L. Qu, Int. J. Hydrogen Energy 2014, 39, 6354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlKhsbk%3D&md5=2b1c2707abcf6e05730528bdb7c709e2CAS |
[22] J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, X. C. Wang, Nat. Commun. 2012, 2, 1139.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFWrtb4%3D&md5=0a0d5ff45429ddfee6746388bf9fc2f9CAS |
[24] J. G. Yu, Y. R. Su, B. Cheng, Adv. Funct. Mater. 2007, 17, 1984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCrtLg%3D&md5=372568cd1cc629b8be7a0deff2274e57CAS |
[25] J. Xu, Y. Wang, Y. F. Zhu, Langmuir 2013, 29, 10566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOqur3E&md5=5be7fe6a7127a3d18f506384c93e71ddCAS | 23888983PubMed |
[26] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009, 25, 10397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Sqtrg%3D&md5=c32fbac42f00f44d62cbb7d57ef00e58CAS | 19705905PubMed |
[27] X. F. Chen, X. C. Wang, X. Z. Fu, Energy Environ. Sci. 2009, 2, 872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFajsbs%3D&md5=363bcbf85625bbce78b3b4d8930002e2CAS |
[28] J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqsr7I&md5=d3f246bd1054d8ca643e821f79c9db83CAS |
[29] Y. Wang, R. Shi, J. Lin, Y. F. Zhu, Energy Environ. Sci. 2011, 4, 2922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrs7nN&md5=c4417eeac6dc8fafb5e1b6762b41ab93CAS |
[30] K. Sridharan, E. Y. Jang, T. J. Park, Appl. Catal. B 2013, 142–143, 718.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. Fu, B. B. Chang, Y. L. Tian, F. N. Xi, X. P. Dong, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 3083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFKnsbs%3D&md5=0caf4820266babe74cfe2ee14481bcbfCAS |
[32] L. Zhang, D. W. Jing, X. L. She, H. W. Liu, D. J. Yang, Y. Lu, J. Li, Z. F. Zheng, L. J. Guo, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 2071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslGitQ%3D%3D&md5=cfffcd6fc7b25d6560c28cfb93c3c20fCAS |
[33] L. F. Qi, J. G. Yu, M. Jaroniec, Adsorption 2013, 19, 557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslSjur0%3D&md5=d422ee27919f9dbb79a31d3fc1f5e599CAS |
[34] Y. L. Liao, J. Brame, W. X. Que, Z. M. Xiu, H. X. Xie, Q. L. Li, M. Fabian, P. J. Alvarez, J. Hazard. Mater. 2013, 260, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yks7rJ&md5=e3152648ce72d53dd197e7e7b54b8969CAS |
[35] X. J. Bai, L. Wang, Y. F. Zhu, ACS Catal. 2012, 2, 2769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GrurjK&md5=eeebc6b02416e9c61c6c04aa996b4083CAS |
[36] G. P. Dai, J. G. Yu, G. Liu, J. Phys. Chem. C 2011, 115, 7339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVamtL4%3D&md5=ca2bd8560fdc751603ebfc8b36d1bb10CAS |
[37] W. J. Li, D. Z. Li, Y. M. Lin, P. X. Wang, W. Chen, X. Z. Fu, Y. Shao, J. Phys. Chem. C 2012, 116, 3552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVWlsA%3D%3D&md5=adb3c1e3f732d3213aaf632a28cfe3dfCAS |