Enantioselective Photochemical Rearrangements of Spirooxindole Epoxides Catalyzed by a Chiral Bifunctional Xanthone
Mark M. Maturi A , Alexander Pöthig A and Thorsten Bach A BA Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany.
B Corresponding author. Email: thorsten.bach@ch.tum.de
Australian Journal of Chemistry 68(11) 1682-1692 https://doi.org/10.1071/CH15280
Submitted: 15 May 2015 Accepted: 12 June 2015 Published: 17 July 2015
Abstract
The title compounds were shown to undergo an enantioselective photochemical rearrangement to 3-acylindolin-2-ones (16–33 % ee). A xanthone, which is tethered via an anellated oxazole to a chiral 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one scaffold, efficiently catalyzed this reaction at λ 366 nm, presumably by triplet sensitization. The observed enantioselectivity can be explained by hydrogen bonding of the oxindole substrate and the putative 1,3-diradical intermediate to the lactam part of the catalyst. Although one substrate enantiomer is processed with minor preference over the other, it was shown that the reaction is not stereospecific. Rather, the main reason for the observed selectivity is the enantioselective migration step.
References
[1] (a) Recent reviews: R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem., Int. Ed. 2015, 54, 3872.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVCruro%3D&md5=c3e73e19946f0ed95377134a32731ea3CAS |
(b) C. Yang, Y. Inoue, Chem. Soc. Rev. 2014, 43, 4123.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Selected examples: G. S. Hammond, R. S. Cole, J. Am. Chem. Soc. 1965, 87, 3256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXks1ahu78%3D&md5=c322c77bfc5f4c53a965bce74cda8c9fCAS |
(b) C. Ouannès, R. Beugelmans, G. Roassi, J. Am. Chem. Soc. 1973, 95, 8472.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Inoue, T. Yokoyama, N. Yamasaki, A. Tai, Nature 1989, 341, 225.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-I. Kim, G. B. Schuster, J. Am. Chem. Soc. 1990, 112, 9635.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 2005, 436, 1139.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. Maeda, T. Wada, T. Mori, S. Kono, N. Kanomata, Y. Inoue, J. Am. Chem. Soc. 2011, 133, 10379.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) T. Bach, H. Bergmann, K. Harms, Angew. Chem., Int. Ed. 2000, 39, 2302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlGkurc%3D&md5=7f8749a30f5df4e8c1e0908fb62a3d4aCAS |
(b) T. Bach, H. Bergmann, J. Am. Chem. Soc. 2000, 122, 11525.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Bach, H. Bergmann, B. Grosch, K. Harms, E. Herdtweck, Synthesis 2001, 1395.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Bach, T. Aechtner, B. Neumüller, Chem. – Eur. J. 2002, 8, 2464.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. Grosch, C. Orlebar, E. Herdtweck, W. Massa, T. Bach, Angew. Chem., Int. Ed. 2003, 42, 3693.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) C. Müller, A. Bauer, T. Bach, Angew. Chem., Int. Ed. 2009, 48, 6640.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Müller, M. M. Maturi, A. Bauer, M. C. Cuquerella, M. A. Miranda, T. Bach, J. Am. Chem. Soc. 2011, 133, 16689.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. M. Maturi, M. Wenninger, R. Alonso, A. Bauer, A. Pöthig, E. Riedle, T. Bach, Chem. – Eur. J. 2013, 19, 7461.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Alonso, T. Bach, Angew. Chem., Int. Ed. 2014, 53, 4368.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. M. Maturi, T. Bach, Angew. Chem., Int. Ed. 2014, 53, 7661.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) L. Wang, Z. Li, L. Lu, W. Zhang, Tetrahedron 2012, 68, 1483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslGqug%3D%3D&md5=94f1ca132a853f55a5bc51bfcb2e5385CAS |
(b) L. Wang, Y. Su, X. Xu, W. Zhang, Eur. J. Org. Chem. 2012, 6606.
[6] (a) G. W. Griffin, A. Padwa, in Photochemistry of Heterocyclic Compounds (Ed. O. Buchardt) 1976, Vol. 4, pp. 41–72 (Wiley: New York, NY).
(b) M. Nastasi, J. Streith, in Rearrangements in Ground and Excited States (Ed. P. de Mayo) 1980, Vol. 3, pp. 445–499 (Academic Press: New York, NY).
(c) K. Murayama, Y. Kubo, in CRC Handbook of Photochemistry and Photobiology (Eds W. M. Horspool, P.-S. Song) 1995, pp. 375–383 (CRC Press: Boca Raton, FL).
[7] (a) C. K. Johnson, B. Dominy, W. Reusch, J. Am. Chem. Soc. 1963, 85, 3894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXjs1ShtQ%3D%3D&md5=940d171c7824fbbc7b3b8e89b1ab1e05CAS |
(b) O. Jeger, Angew. Chem., Int. Ed. Engl. 1964, 3, 318.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Wehrli, C. Lehmann, T. Iizuka, K. Schaffner, O. Jeger, Helv. Chim. Acta 1967, 50, 2403.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Pfenninger, D. E. Poel, C. Berse, H. Wehrli, K. Schaffner, O. Jeger, Helv. Chim. Acta 1968, 51, 772.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. A. Saboz, T. Iizuka, H. Wehrli, K. Schaffner, O. Jeger, Helv. Chim. Acta 1968, 51, 1362.
| Crossref | GoogleScholarGoogle Scholar |
(f) O. Jeger, K. Schaffner, Pure Appl. Chem. 1970, 21, 247.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. S. Valentine, R. M. Gresham, M. J. Miller, J. Am. Chem. Soc. 1970, 92, 5795.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. P. Pappas, R. M. Gresham, M. J. Miller, J. Am. Chem. Soc. 1970, 92, 5797.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. P. Pète, M. L. Viriot-Villaume, Bull. Soc. Chim. Fr. 1971, 3699.
(j) J. P. Pète, M. L. Viriot-Villaume, Bull. Soc. Chim. Fr. 1971, 3709.
(k) S. P. Pappas, B. La Quoc, J. Am. Chem. Soc. 1973, 95, 7906.
| Crossref | GoogleScholarGoogle Scholar |
(l) J. Muzart, J. P. Pète, Tetrahedron Lett. 1974, 15, 3919.
| Crossref | GoogleScholarGoogle Scholar |
(m) J. R. Williams, G. M. Sarkisian, J. Quigley, A. Hasiuk, R. VanderVennen, J. Org. Chem. 1974, 39, 1028.
| Crossref | GoogleScholarGoogle Scholar |
(n) E. P. Müller, O. Jeger, Helv. Chim. Acta 1975, 58, 2173.
| Crossref | GoogleScholarGoogle Scholar |
(o) A. Marchesini, U. M. Pagnoni, Gazz. Chim. Ital. 1976, 106, 663.
(p) J. Muzart, J. P. Pète, Tetrahedron Lett. 1977, 18, 307.
| Crossref | GoogleScholarGoogle Scholar |
(q) M. J. Caus, A. Cánovas, J.-J. Bonet, Helv. Chim. Acta 1980, 63, 473.
| Crossref | GoogleScholarGoogle Scholar |
(r) V. Singh, Acc. Chem. Res. 1999, 32, 324.
| Crossref | GoogleScholarGoogle Scholar |
(s) K. C. Nicolaou, J. Becker, Y. H. Lim, A. Lemire, T. Neubauer, A. Montero, J. Am. Chem. Soc. 2009, 131, 14812.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) H. Wehrli, C. Lehmann, P. Keller, J. J. Bonet, K. Schaffner, O. Jeger, Helv. Chim. Acta 1966, 49, 2218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXlsFKhtQ%3D%3D&md5=f4dbe547a5e6abf2b81727494938156aCAS |
(b) H. J. Wüthrich, A. Siewinski, K. Schaffner, O. Jeger, Helv. Chim. Acta 1973, 56, 239.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Muzart, J. P. Pète, Tetrahedron Lett. 1977, 18, 303.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Hallet, J. Muzart, J. P. Pète, J. Org. Chem. 1981, 46, 4275.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. Mizuno, N. Ichinose, Y. Otsuji, R. A. Caldwell, J. Am. Chem. Soc. 1985, 107, 5797.
| Crossref | GoogleScholarGoogle Scholar |
[9] W. C. Anthony, J. Org. Chem. 1966, 31, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XjsFOgsg%3D%3D&md5=277458d1b5fbc65d9f05d078c4a821afCAS |
[10] (a) E. Weitz, A. Scheffer, Chem. Ber. 1921, 54, 2327.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Nemoto, T. Ohshima, M. Shibasaki, J. Synth. Org. Chem., Jpn. 2002, 60, 94.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Shi, Acc. Chem. Res. 2004, 37, 488.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. L. Davis, J. Stiller, T. Naicker, H. Jiang, K. A. Jørgensen, Angew. Chem., Int. Ed. 2014, 53, 7406.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) A. W. Johnson, R. B. LaCount, J. Am. Chem. Soc. 1961, 83, 417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXlsVajtA%3D%3D&md5=87af1e3d299f8031d2a8b14f94884969CAS |
(b) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353.
| Crossref | GoogleScholarGoogle Scholar |
(c) A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. L. Davis, J. Stiller, T. Naicker, H. Jiang, K. A. Jørgensen, Angew. Chem., Int. Ed. 2014, 53, 7406.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. Ranieri, A. Sartori, C. Curti, L. Battistini, G. Rassu, G. Pelosi, G. Casiraghi, F. Zanardi, Org. Lett. 2014, 16, 932.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXkt1ensg%3D%3D&md5=a6ba5bc7d2e95c429f9f793f344e4790CAS |
(b) P. R. Sebahar, R. M. Williams, J. Am. Chem. Soc. 2000, 122, 5666.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Albrecht, A. Albrecht, H. Krawczyk, K. A. Jørgensen, Chem. – Eur. J. 2010, 16, 28.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. López-Alvarado, C. Avendaño, Synthesis 2002, 0104.
| Crossref | GoogleScholarGoogle Scholar |
[14] For an emission spectrum of the 366 nm lamps, which were employed in this study, see Ref. [4c].
[15] T. A. Duffey, S. A. Shaw, E. Vedejs, J. Am. Chem. Soc. 2009, 131, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFals7rN&md5=50206adc3fd812919e2c22ec64bb78d8CAS | 19093886PubMed |
[16] (a) K. Fuji, T. Kawabata, Chem. – Eur. J. 1998, 4, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1ehtL8%3D&md5=aaed8e21bf4dd81e2ac4b681a7669941CAS |
(b) H. W. Zhao, D. C. Hsu, P. R. Carlier, Synthesis 2005, 1.
[17] S. S. Hixson, J. Am. Chem. Soc. 1976, 98, 1271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Srt7s%3D&md5=d49becf36eefd67ae0d891bd1e22e8a2CAS |
[18] R. Weixler, T. Bach, Synthesis 2014, 46, 2663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslWns7zM&md5=84cb1e0c342c121fc7a4b9dee8734ee5CAS |