Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

C-Terminal Modifications Broaden Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20

Wenyi Li A B , Julien Tailhades B , M. Akhter Hossain A B , Neil M. O’Brien-Simpson C D , Eric C. Reynolds C D , Laszlo Otvos Jr E , Frances Separovic A C F and John D. Wade A B F
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.

B The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia.

C Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

D Oral Health CRC, Melbourne Dental School, University of Melbourne, Melbourne, Vic. 3010, Australia.

E Department of Biology, Temple University, Philadelphia, PA 19122, USA.

F Corresponding authors. Email: fs@unimelb.edu.au; john.wade@florey.edu.au

Australian Journal of Chemistry 68(9) 1373-1378 https://doi.org/10.1071/CH15169
Submitted: 8 April 2015  Accepted: 21 May 2015   Published: 12 June 2015

Abstract

A series of N- and C-terminal modifications of the monomeric proline-rich antimicrobial peptide, Chex1-Arg20, was obtained via different chemical strategies using Fmoc/tBu solid-phase peptide synthesis in order to study their effects on a panel of Gram-negative bacteria. In particular, C-terminal modifications with hydrazide or alcohol functions extended their antibacterial activity from E. coli and K. pneumoniae to other Gram-negative species, A. baumannii and P. aeruginosa. Furthermore, these analogues did not show cytotoxicity towards mammalian cells. Hence, such modifications may aid in the development of more potent proline-rich antimicrobial peptides with a greater spectrum of activity against Gram-negative bacteria than the parent peptide.


References

[1]  K. Gammon, Nature 2014, 509, S10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFGgtbk%3D&md5=01bb4e1e7f8b815e0c250e4c3876ca3fCAS | 24784422PubMed |

[2]  H. Jenssen, P. Hamill, R. E. W. Hancock, Clin. Microbiol. Rev. 2006, 19, 491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaqsrk%3D&md5=e5c4c36ca1a8c8557203d986209001eeCAS | 16847082PubMed |

[3]  (a) L. Otvos, J. Pept. Sci. 2005, 11, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehtL%2FM&md5=593783b9d5a7da8f266221b1bc8231c6CAS | 16059966PubMed |
      (b) W. Li, J. Tailhades, N. O’Brien-Simpson, F. Separovic, L. Otvos, M. A. Hossain, J. D. Wade, Amino Acids 2014, 46, 2287.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Krizsan, D. Volke, S. Weinert, N. Strater, D. Knappe, R. Hoffmann, Angew. Chem. Int. Ed. 2014, 53, 12236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCisrjI&md5=c5556f5deb1b56102c27255ae82468d8CAS |

[5]  M. Mardirossian, R. Grzela, C. Giglione, T. Meinnel, R. Gennaro, P. Mergaert, M. Scocchi, Chem. Biol. 2014, 21, 1639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGisbbI&md5=2102e9048205a8a97fb28e733e54b15fCAS | 25455857PubMed |

[6]  M. Cassone, N. Frith, P. Vogiatzi, J. D. Wade, L. Otvos, Int. J. Pept. Res. Ther. 2009, 15, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslart7c%3D&md5=754ebfa1bc7ef5e820dd6da1e44644c2CAS |

[7]  L. Otvos, J. D. Wade, F. Lin, B. A. Condie, J. Hanrieder, R. Hoffmann, J. Med. Chem. 2005, 48, 5349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Wku74%3D&md5=d7ab52c8e5403589100aa55177ed7ebbCAS | 16078852PubMed |

[8]  P. B. Noto, G. Abbadessa, M. Cassone, G. D. Mateo, A. Agelan, J. D. Wade, D. Szabo, B. Kocsis, K. Nagy, F. Rozgonyi, L. Otvos, Protein Sci. 2008, 17, 1249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ehsL8%3D&md5=1190f121e76b7374dc5c4fe50e30a49dCAS | 18413862PubMed |

[9]  M. Cassone, P. Vogiatzi, R. La Montagna, V. De Olivier Inacio, P. Cudic, J. D. Wade, L. Otvos Jr, Peptides 2008, 29, 1878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12lt7bL&md5=a4da2cc6f0ffcc861150ff7b5bba7aa5CAS | 18721837PubMed |

[10]  M. Cassone, N. Frith, P. Vogiatzi, J. D. Wade, L. Otvos, Int. J. Pept. Res. Ther. 2009, 15, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslart7c%3D&md5=754ebfa1bc7ef5e820dd6da1e44644c2CAS |

[11]  F. Guida, M. Benincasa, S. Zahariev, M. Scocchi, F. Berti, R. Gennaro, A. Tossi, J. Med. Chem. 2015, 58, 1195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOhu7vP&md5=5c2ba1fc717146cd6346f5e49cf2bfc5CAS | 25525837PubMed |

[12]  D. Oh, A. Nasrolahi Shirazi, K. Northup, B. Sullivan, R. K. Tiwari, M. Bisoffi, K. Parang, Mol. Pharm. 2014, 11, 2845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOjt7vJ&md5=065c3e8bcf97b6dfa567b9db8462cb1dCAS | 24978295PubMed |

[13]  P. Czihal, D. Knappe, S. Fritsche, M. Zahn, N. Berthold, S. Piantavigna, U. Müller, S. Van Dorpe, N. Herth, A. Binas, G. Köhler, B. De Spiegeleer, L. L. Martin, O. Nolte, N. Sträter, G. Alber, R. Hoffmann, ACS Chem. Biol. 2012, 7, 1281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFSgsbg%3D&md5=9c75dcc113ab74340f1b3dfa8c7c6068CAS | 22594381PubMed |

[14]  A. Aboelmagd, I. A. Ali, E. M. Salem, ARKIVOC 2011, 2011, 337.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Proc. Natl. Acad. Sci. USA 1982, 79, 7951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmslertw%3D%3D&md5=bff9e2d6650a75d237a81dc6732661e0CAS | 6961463PubMed |
      (b) W. Bauer, U. Briner, W. Doepfner, R. Haller, R. Huguenin, P. Marbach, T. J. Petcher, J. Pless, Life Sci. 1982, 31, 1133.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) J.-S. Zheng, S. Tang, Y.-K. Qi, Z.-P. Wang, L. Liu, Nat. Protoc. 2013, 8, 2483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Kjsr4%3D&md5=3c3ddb5e433e261063830808cd537ea9CAS | 24232250PubMed |
      (b) G.-M. Fang, Y.-M. Li, F. Shen, Y.-C. Huang, J.-B. Li, Y. Lin, H. K. Cui, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 7645.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G.-M. Fang, J.-X. Wang, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 10347.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Tailhades, M.-A. Gidel, B. Grossi, J. Lécaillon, L. Brunel, G. Subra, J. Martinez, M. Amblard, Angew. Chem. Int. Ed. 2010, 49, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WltL%2FP&md5=9f0eac7618f7687ec18eb787eb46cc81CAS |

[18]  D. Amsterdam, in Antibiotics in Laboratory Medicine (Ed. V. Lorian) 1996. pp. 52–111 (Williams & Wilkins: Baltimore, MD).

[19]  (a) F. Separovic, J. Gehrmann, T. Milne, B. A. Cornell, S. Y. Lin, R. Smith, Biophys. J. 1994, 67, 1495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVGnsr4%3D&md5=9c4f08742a52991a77adc3d2fc9de609CAS | 7529584PubMed |
      (b) R. Nagaraj, P. Balaram, Acc. Chem. Res. 1981, 14, 356.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  G. B. Fields, R. L. Noble, Int. J. Pept. Protein Res. 1990, 35, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVWhsbg%3D&md5=93bb580dcf07802d1c4026c0a17dfd62CAS | 2191922PubMed |

[21]  R. J. W. Lambert, J. Pearson, J. Appl. Microbiol. 2000, 88, 784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVOhsr8%3D&md5=1fee91cfa9a0cc19cb398700b1f7aa46CAS |