Formation of Carbanions from Carboxylate Ions Bearing Electron-Withdrawing Groups via Photoinduced Decarboxylation: Addition of Generated Carbanions to Benzaldehyde
Yuta Kumagai A , Takashi Naoe A , Keisuke Nishikawa A , Kazuyuki Osaka A , Toshio Morita A and Yasuharu Yoshimi A BA Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
B Corresponding author. Email: yyoshimi@u-fukui.ac.jp
Australian Journal of Chemistry 68(11) 1668-1671 https://doi.org/10.1071/CH15115
Submitted: 9 March 2015 Accepted: 6 May 2015 Published: 25 May 2015
Abstract
The photoinduced decarboxylation of carboxylate ions bearing electron-withdrawing groups using biphenyl and 1,4-dicyanonaphthalene leads to the efficient generation of carbanions under mild conditions. The efficiency of the carbanion generation is strongly dependent on the single-electron transfer from the photogenerated radical anion of the electron-acceptor to the radical. In particular, the cyanomethyl anion formed using this photochemical method can be added to benzaldehydes to give the corresponding adducts.
References
[1] E. Buncel, T. Durst, Comprehensive Carbanion Chemistry 1980 (Elsevier: Amsterdam).[2] (a) Y. Liu, X. Wang, X. Wang, W. He, Org. Biomol. Chem. 2014, 12, 3163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFeru7Y%3D&md5=6aea5c19f209580c8d1a3be918d0a41cCAS | 24682148PubMed |
(b) P. Ramesh, B. Shalini, N. W. Fadnavis, RSC Adv. 2014, 4, 7368.
| Crossref | GoogleScholarGoogle Scholar |
(c) P.-X. Zhou, Y.-Y. Ye, Y.-M. Liang, Org. Lett. 2013, 15, 5080.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. Budac, P. Wan, J. Photochem. Photobiol., A 1992, 67, 135.Recently, similar photoinduced decarboxylative radical reactions of carboxylic acids using phthalimide,[3b-d] cyanoarene,[3e,f] TiO2,[3g,h] Ir,[3i,j] and Fukuzumi[3k] catalyst have been widely explored.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFOgtg%3D%3D&md5=575fd9eb664ef7202d73d5b7e49aab02CAS |
(b) A. G. Griesbeck, W. Kramer, M. Olegemöller, Synlett 1999, 1169.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Gallagher, F. Hatoum, N. Zientek, M. Olegemöller, Tetrahedron Lett. 2010, 51, 3639.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Hatoum, J. Engler, C. Zelmar, J. Wiben, C. A. Motti, J. Lex, M. Olegemöller, Tetrahedron Lett. 2012, 53, 5573.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Libman, J. Am. Chem. Soc. 1975, 97, 4139.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Yoshimi, S. Hayashi, K. Nishikawa, Y. Okita, K. Maeda, T. Morita, T. Itou, Res. Chem. Intermed. 2013, 39, 397.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. W. Manley, R. T. McBurney, P. Miller, J. C. Walton, J. Org. Chem. 2014, 79, 1386.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. Shimaoka, S. Kuwahara, M. Yamashita, K. Katayama, Anal. Sci. 2014, 30, 619.
| Crossref | GoogleScholarGoogle Scholar |
(i) Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 5257.
| Crossref | GoogleScholarGoogle Scholar |
(j) L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 10886.
| Crossref | GoogleScholarGoogle Scholar |
(k) C. Cassani, G. Bergonzini, C. Wallentin, Org. Lett. 2014, 16, 4228.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) Y. Yoshimi, T. Itou, M. Hatanaka, Chem. Commun. 2007, 5244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2gs73P&md5=c51f39a0cc6e2c49835a7fdffd324ccaCAS |
(b) T. Itou, Y. Yoshimi, T. Morita, Y. Tokunaga, M. Hatanaka, Tetrahedron 2009, 65, 263.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Yoshimi, M. Masuda, T. Mizunashi, K. Nishikawa, K. Maeda, N. Koshida, T. Itou, T. Morita, M. Hatanaka, Org. Lett. 2009, 11, 4652.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Yoshimi, S. Hayashi, K. Nishikawa, Y. Haga, K. Maeda, T. Morita, T. Itou, Y. Okada, N. Ichinose, M. Hatanaka, Molecules 2010, 15, 2623.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Yoshimi, K. Kobayashi, H. Kamakura, K. Nishikawa, Y. Haga, K. Maeda, T. Morita, T. Itou, Y. Okada, M. Hatanaka, Tetrahedron Lett. 2010, 51, 2332.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. Itou, Y. Yoshimi, K. Nishikawa, T. Morita, Y. Okada, N. Ichinose, M. Hatanaka, Chem. Commun. 2010, 6177.
| Crossref | GoogleScholarGoogle Scholar |
(g) K. Nishikawa, Y. Yoshimi, K. Maeda, T. Morita, I. Takahashi, T. Itou, S. Inagaki, M. Hatanaka, J. Org. Chem. 2013, 78, 582.
| Crossref | GoogleScholarGoogle Scholar |
(h) Y. Yoshimi, S. Washida, Y. Okita, K. Nishikawa, K. Maeda, S. Hayashi, T. Morita, Tetrahedron Lett. 2013, 54, 4324.
| Crossref | GoogleScholarGoogle Scholar |
(i) H. Saito, T. Kanetake, K. Osaka, K. Maeda, T. Morita, Y. Yoshimi, Tetrahedron Lett. 2015, 56, 1645.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. Yokoi, T. Nakano, W. Fujita, K. Ishiguro, Y. Sawaki, J. Am. Chem. Soc. 1998, 120, 12453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntl2qsrc%3D&md5=91e6cc45289e38faa0363ef03a1c74b1CAS |
[6] Typical experimental procedure for the photoreaction of 4a with 5a: A dry CH3CN solution (30 mL) containing 4a (0.15 mmol, 5 mM), 5a (0.15 mmol, 5 mM), BP (0.6 mmol, 20 mM), DCN (0.6 mmol, 20 mM), and 4A molecular sieves (6 g) in two Pyrex vessels (15 mm × 180 mm) were purged with argon for 10 min. The mixture was irradiated with a 100 W high-pressure mercury lamp for 10 h, and filtered. Then, the filtrate was evaporated. The product was purified by silica gel column chromatography using hexane and ethyl acetate as eluents to give adduct 6a.
[7] The high volatilities of the reduction products obtained from 4b–d are responsible for the losses incurred in the workup step.
[8] F. Eckert, I. Leito, I. Kaljurand, A. Kutt, A. Klamt, M. Diedenhofen, J. Comput. Chem. 2009, 30, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFWnsbc%3D&md5=bc9135bda6579757f28f5d688ecff3beCAS | 18727157PubMed |