Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A General Method Towards Efficient Synthesis and Fluorescence Tuning of Carbon Black-Derived Carbon Dots via Controlled Liquid Oxidization

Haoran Yuan A , Denian Li A D , Yan Liu B and Chuanxi Xiong B C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Renewable Energy and Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.

B State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

C School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China.

D Corresponding author. Email: lidn@ms.giec.ac.cn

Australian Journal of Chemistry 68(9) 1446-1454 https://doi.org/10.1071/CH15014
Submitted: 16 January 2015  Accepted: 5 March 2015   Published: 30 March 2015

Abstract

Efficient synthesis and controlled modification of carbon dots (CDs) with tuneable properties on the basis of facile technical routes are of great significance for user-defined applications as well as more insightful understanding of the unique fluorescence from carbon nanomaterials. In this work, we report an improved nitric acid oxidization method towards low-cost and rapid preparation of fluorescent CDs. This is achieved by using industrial carbon black specimens as the precursor and implementing a reduced pressure distillation for the purpose of eliminating excessive acids. Unexpectedly, the product exhibits an interesting dual luminescence behaviour with tuneable characteristics that differs from all previously reported CDs. The strongest emissions at fixed or varied excitations can be simultaneously tuned from blue to green or yellow by simply prolonging the time of acid oxidization. These emissions show distinct stabilities in acid and alkaline environments, thereby making the resultant CDs very promising candidates for pH probes. It is further revealed that this simple synthesis and fluorescence tuning strategy is also applicable to CDs from other carbon blacks.


References

[1]  S. Iijima, Nature 1991, 354, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Ojtg%3D%3D&md5=c5a5d85a494a5634aec3ef4cf693b6a0CAS |

[2]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=eb05cea8763f0e0b86516f66d2fdc3bbCAS | 17330084PubMed |

[3]  M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 2002, 297, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslWrsrY%3D&md5=72dea54763b9eaacb06921618c9a925dCAS | 12142535PubMed |

[4]  S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, R. B. Weisman, Science 2010, 330, 1656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGms7rK&md5=0e4eff49c50ccaac2a7e7e61b0e1cb87CAS | 21109631PubMed |

[5]  K. P. Loh, Q. L. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOrsLzK&md5=3f873401a7d2947ea3f2dbcd5dc10dadCAS | 21107364PubMed |

[6]  S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed. 2010, 49, 6726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsbnI&md5=1d35ccd0b33ab89019d72c6c8e0c587aCAS |

[7]  Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca, S. Y. Xie, J. Am. Chem. Soc. 2006, 128, 7756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehur0%3D&md5=d0a46c948c49712dfef42337150d48a3CAS | 16771487PubMed |

[8]  L. Cao, X. Wang, M. J. Meziani, F. S. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie, Y. P. Sun, J. Am. Chem. Soc. 2007, 129, 11318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFCjtb8%3D&md5=b2076ca44a58978471bbbba154cf513fCAS | 17722926PubMed |

[9]  H. Choi, S. J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J. W. Jung, H. J. Choi, M. Cha, J. R. Jeong, I. W. Hwang, M. H. Song, B. S. Kim, J. Y. Kim, Nat. Photonics 2013, 7, 732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCjtLbK&md5=5c02660c85466c41881d3edb74c008a5CAS |

[10]  J. K. Kim, M. J. Park, S. J. Kim, D. H. Wang, S. P. Cho, S. Bae, J. H. Park, B. H. Hong, ACS Nano 2013, 7, 7207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOqt7jN&md5=8e265b440ab59c9b4971cabd05d5629cCAS | 23889189PubMed |

[11]  H. T. Li, X. D. He, Z. H. Kang, H. Huang, Y. Liu, J. L. Liu, S. Y. Lian, C. H. A. Tsang, X. B. Yang, S. T. Lee, Angew. Chem., Int. Ed. 2010, 49, 4430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyntbw%3D&md5=3cf489ccd94120d0d934404dda128fa6CAS |

[12]  S. J. Zhuo, M. W. Shao, S. T. Lee, ACS Nano 2012, 6, 1059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVGguw%3D%3D&md5=bb73eeb5ba6980d7886e908212ca8be1CAS |

[13]  F. Wang, Y. H. Chen, C. Y. Liu, D. G. Ma, Chem. Commun. 2011, 47, 3502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVWls7s%3D&md5=4c307626c6980340d1d81de8af9a13a2CAS |

[14]  Z. A. Qiao, Y. F. Wang, Y. Gao, H. W. Li, T. Y. Dai, Y. L. Liu, Q. S. Huo, Chem. Commun. 2010, 46, 8812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahu77F&md5=a7e4d6069e13067e4c20626fe634b183CAS |

[15]  L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. J. Chang, S. W. Chen, Chem. Mater. 2009, 21, 2803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyqsr4%3D&md5=8fed20ddfca953871f7136b1c321d342CAS |

[16]  H. P. Liu, T. Ye, C. D. Mao, Angew. Chem., Int. Ed. 2007, 46, 6473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOjs7rM&md5=ea87482237e459439830b5f091d7d9eeCAS |

[17]  Y. Q. Dong, N. N. Zhou, X. M. Lin, J. P. Lin, Y. W. Chi, G. N. Chen, Chem. Mater. 2010, 22, 5895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ohu7jI&md5=31cabbaf66b829d87ef3913f4d6b0c7aCAS |

[18]  D. Y. Pan, J. C. Zhang, Z. Li, M. H. Wu, Adv. Mater. 2010, 22, 734.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Q. Tao, K. Yang, Z. Ma, J. M. Wan, Y. J. Zhang, Z. H. Kang, Z. Liu, Small 2012, 8, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ls7jM&md5=1fc87105c43eda7da69765c68c84e04fCAS |

[20]  U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 2008, 5, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgsbrM&md5=a518fb0e33fef1ddbb2dfd0b2beb45e9CAS | 18756197PubMed |

[21]  G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktFamsL4%3D&md5=30a490fa1f12e84e704e1726246cc5b0CAS |

[22]  J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao, Chem. – Eur. J. 2014, 20, 4993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Shs74%3D&md5=e97404aa2195a2c990e0a2e1c1931396CAS | 24623706PubMed |

[23]  Z. Jiang, A. Nolan, J. G. A. Walton, A. Lilienkampf, R. Zhang, M. Bradley, Chem. – Eur. J. 2014, 20, 10926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWmtLvN&md5=f1409c1377c5847a5d4ab054f7274566CAS | 25099331PubMed |

[24]  Z. S. Qian, X. Y. Shan, L. J. Chai, J. J. Ma, J. R. Chen, H. Feng, ACS Appl. Mater. Interfaces 2014, 6, 6797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls12jurw%3D&md5=d4aaad16fd7ee144580b74f43fefa74bCAS |

[25]  J. Zhou, C. Wang, Z. S. Qian, C. C. Chen, J. J. Ma, G. H. Du, C. R. Jianrong, H. Feng, J. Mater. Chem. 2012, 22, 11912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Sms70%3D&md5=cea64dd94ba913661a3b3bf37f5f8b9aCAS |

[26]  X. K. Zhang, L. J. Meng, X. F. Wang, Q. H. Lu, Chem. – Eur. J. 2010, 16, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVyg&md5=3f1d52737eae682ceb9b4a39cc6f1493CAS |

[27]  D. N. Li, Q. Li, X. Hu, J. Huang, H. R. Li, L. J. Dong, H. A. Xie, C. X. Xiong, Chin. J. Chem. 2013, 31, 1513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGis7zK&md5=653cef3946ced7d743316c34862d540eCAS |

[28]  X. H. Wang, K. G. Qu, B. L. Xu, J. S. Ren, X. G. Qu, J. Mater. Chem. 2011, 21, 2445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sgurs%3D&md5=1fe081a86c09c8e4584a4805ada93833CAS |

[29]  J. Wang, C. F. Wang, S. Chen, Angew. Chem., Int. Ed. 2012, 51, 9297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqtL%2FF&md5=85a3dfd687073a1870c38222e181dc89CAS |

[30]  D. Sun, R. Ban, P. H. Zhang, G. H. Wu, J. R. Zhang, J. J. Zhu, Carbon 2013, 64, 424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yltrbE&md5=619ae4d6b6f414f0c9a58a426f38b0d8CAS |

[31]  S. Chandra, P. Patra, S. H. Pathan, S. Roy, S. Mitra, A. Layek, R. Bhar, P. Pramanik, A. Goswami, J. Mater. Chem. B 2013, 1, 2375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVygtb0%3D&md5=d2efc2cea019d659f1d48022a0a5f2ceCAS |

[32]  K. P. Liu, J. J. Zhang, F. F. Cheng, T. T. Zheng, C. M. Wang, J. J. Zhu, J. Mater. Chem. 2011, 21, 12034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslSjtbs%3D&md5=68700c36d77d55b562352d47e8eda40cCAS |

[33]  L. X. Lin, S. W. Zhang, Chem. Commun. 2012, 48, 10177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2htbfE&md5=a26f97e55f4758a184cd7c46580e3089CAS |

[34]  S. C. Ray, A. Saha, N. R. Jana, R. Sarkar, J. Phys. Chem. C 2009, 113, 18546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eltrnE&md5=1c7c2602ed337080c4057fc79828b57eCAS |

[35]  Q. Li, L. J. Dong, F. Sun, J. Huang, H. A. Xie, C. X. Xiong, Chem. – Eur. J. 2012, 18, 7055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1eksbY%3D&md5=a4b1749858c470c6bfec589ae9a6448eCAS | 22565628PubMed |

[36]  Y. Shen, S. B. Yang, P. Zhou, Q. Q. Sun, P. F. Wang, L. Wan, J. Li, L. Y. Chen, X. B. Wang, S. J. Ding, D. W. Zhang, Carbon 2013, 62, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqsr3L&md5=1d4d9d10aa676113d22872083a772143CAS |

[37]  J. Robertson, E. P. Oreilly, Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 35, 2946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWqurc%3D&md5=2369367c1e4a0a797b1a4b07428affd4CAS |

[38]  C. Tang, Y. Zhang, W. L. Guo, C. F. Chen, J. Phys. Chem. C 2010, 114, 18091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmtbrJ&md5=36b7b540e3ce01bad33eaac6f6f49f45CAS |

[39]  G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Adv. Mater. 2010, 22, 505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFant7s%3D&md5=12ee1647a7970ac23969730b46d55dedCAS | 20217743PubMed |