A Label-Free Colorimetric Biosensor for 17β-Estradiol Detection Using Nanoparticles Assembled by Aptamer and Cationic Polymer
Dongwei Zhang A B C , Weilin Zhang A C , Jiayun Ye A , Shenshan Zhan A , Bing Xia B , Jing Lv A , Hanchu Xu A , Gaoshang Du A and Lumei Wang A DA School of Agriculture and Biology, and Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, and Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
B School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
C These authors contributed equally to this work.
D Corresponding author. Email: zjuwlm@163.com
Australian Journal of Chemistry 69(1) 12-19 https://doi.org/10.1071/CH14735
Submitted: 29 December 2014 Accepted: 21 May 2015 Published: 29 June 2015
Abstract
Concern is mounting regarding the human health and environment effects of 17β-estradiol (E2), a natural oestrogen excreted by human beings and animals. In this paper, a sensitive and selective biosensor for the detection of E2 using gold nanoparticles (AuNPs), label-free E2-specific aptamer, and poly(diallyldimethylammonium chloride) (PDDA) was developed. In the absence of E2, PDDA can electrostatically interact with E2-specific aptamer, and the charge responsible for inducing AuNPs aggregation was destroyed. However, the introduction of E2 can specifically interact with the aptamer to form E2–aptamer complex so that PDDA can aggregate AuNPs and cause a remarkable change in colour from wine red to blue, which enables colorimetric detection of E2 with selectivity and a detection limit of 1.57 nM.
References
[1] (a) D. Butler, G. G. Guilbault, Sens. Actuators, B 2006, 113, 692.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjsrg%3D&md5=7d59334072dc53a03bf115bf0aaa2996CAS |
(b) L. M. Wang, W. P. Liu, C. X. Yang, Z. Y. Pan, J. Y. Gan, C. Xu, M. R. Zhao, D. Schlenk, Environ. Sci. Technol. 2007, 41, 6124.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. M. Wang, S. S. Zhou, K. D. Lin, M. R. Zhao, W. P. Liu, J. Y. Gan, Environ. Toxicol. Chem. 2009, 28, 1.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. K. Sarmah, G. L. Northcott, F. D. L. Leusch, L. A. Tremblay, Sci. Total Environ. 2006, 355, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFGrtA%3D%3D&md5=07738b530a2e11c181b4c06688611f7aCAS | 16442435PubMed |
[3] (a) Z. H. Liu, Y. Kanjo, S. Mizutani, Sci. Total Environ. 2009, 407, 731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOisrrK&md5=7f9fabe5f73f407104d256113389af20CAS | 18992918PubMed |
(b) P. Fernández-Álvarez, M. Le Noir, B. Guieysse, J. Hazard. Mater. 2009, 163, 1107.
| Crossref | GoogleScholarGoogle Scholar |
[4] E. J. Routledge, D. Sheahan, C. Desbrow, G. C. Brighty, M. Waldock, J. P. Sumpter, Environ. Sci. Technol. 1998, 32, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislSht7o%3D&md5=9ed9c9aa8ea3dcb152e5f001a64da74fCAS |
[5] H. S. Chang, K. H. Choo, B. Lee, S. J. Choi, J. Hazard. Mater. 2009, 172, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgtbzO&md5=bccb5be16f438e07f60e21a00af8070bCAS | 19632774PubMed |
[6] J. H. Lu, D. Y. Kong, L. Zhao, Q. S. Zhou, Int. J. Environ. Anal. Chem. 2014, 94, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsF2hu78%3D&md5=86d6b57036785940f1d5c72db029604dCAS |
[7] M. Farré, M. Kuster, R. Brix, F. Rubio, M. J. L. de Alda, D. Barceló, J. Chromatogr. A 2007, 1160, 166.
| Crossref | GoogleScholarGoogle Scholar | 17540393PubMed |
[8] R. K. Hu, L. F. Zhang, Z. G. Yang, Anal. Bioanal. Chem. 2008, 390, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgurbI&md5=054d9d67275d910bb06e69c9cf029abfCAS |
[9] (a) M. Seifert, S. Haindl, B. Hock, Anal. Chim. Acta 1999, 386, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFKmtL0%3D&md5=0343ef7ba070722d7a4bd6d5c859553fCAS |
(b) H. D. Butala, A. Ramakrishnan, A. Sadana, Sens. Actuators, B 2003, 88, 266.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Wozei, S. W. Hermanowicz, H. Y. N. Holman, Biosens. Bioelectron. 2006, 21, 1654.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Miyashita, T. Shimada, H. Miyagawa, M. Akamatsu, Anal. Bioanal. Chem. 2005, 381, 667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1agsLk%3D&md5=edda0ab70a3d86b2fe2f8c1b8d13d88fCAS | 15662513PubMed |
[11] T. Hahn, K. Tag, K. Riedel, S. Uhlig, K. Baronian, G. Gellissen, G. Kunze, Biosens. Bioelectron. 2006, 21, 2078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVWmsLc%3D&md5=eaba881d513bf36b7e49822c60f239d1CAS | 16431099PubMed |
[12] (a) Q. W. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. X. Wei, J. Dostalek, Talanta 2013, 104, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Sltbc%3D&md5=13fdd16d650c737cb200649116e90cd9CAS |
(b) X. Y. Zhang, Y. Peng, J. L. Bai, B. A. Ning, S. M. Sun, X. D. Hong, Y. Y. Liu, Y. Liu, Z. X. Gao, Sens. Actuators, B 2014, 200, 69.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGgsw%3D%3D&md5=1ff934e9e0163b370808ef989902a115CAS | 1697402PubMed |
(b) S. C. B. Gopinath, Anal. Bioanal. Chem. 2007, 387, 171.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) J. G. Bruno, J. L. Kiel, Biosens. Bioelectron. 1999, 14, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVOjtb0%3D&md5=e6a2b2883349e0c82f7012c24eee098aCAS | 10451913PubMed |
(b) Y. J. Lee, S. W. Lee, J. Microbiol. Biotechnol. 2006, 16, 1149.
(c) B. A. R. Williams, L. Y. Lin, S. M. Lindsay, J. C. Chaput, J. Am. Chem. Soc. 2009, 131, 6330.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Jo, J. Y. Ahn, J. Lee, S. Lee, S. W. Hong, J. W. Yoo, J. Kang, P. Dua, D. K. Lee, S. Hong, S. Kim, Oligonucleotides 2011, 21, 85.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. G. Wu, S. S. Zhan, L. M. Wang, P. Zhou, Analyst 2014, 139, 1550.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Famulok, J. S. Hartig, G. Mayer, Chem. Rev. 2007, 107, 3715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVektrk%3D&md5=9267f99b72ab446bb7cedd8f5c430c36CAS | 17715981PubMed |
[16] Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, M. B. Gu, Biosens. Bioelectron. 2007, 22, 2525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGmt74%3D&md5=3a1f7ee1fed3a9357861f5f1e54e3f28CAS | 17118645PubMed |
[17] (a) N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, A. Z. Gu, Environ. Sci. Technol. 2012, 46, 3288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCisb0%3D&md5=3ccd5f8329afaf08407e4be0ae40f4a5CAS | 22296460PubMed |
(b) F. Long, H. C. Shi, H. C. Wang, RSC Adv. 2014, 4, 2935.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. J. Huang, Y. J. Liu, J. Z. Zhang, Y. M. Liu, Anal. Methods 2014, 6, 8011.
| Crossref | GoogleScholarGoogle Scholar |
[18] O. A. Alsager, S. Kumar, G. R. Willmott, K. P. McNatty, J. M. Hodgkiss, Biosens. Bioelectron. 2014, 57, 262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Onu7w%3D&md5=db4d584ab8d1bbf91fb4c4e6efd194b4CAS | 24594593PubMed |
[19] (a) Y. Y. Qi, B. X. Li, Chem. – Eur. J. 2011, 17, 1642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrtb8%3D&md5=baf8fcd792f2232c9443c29588bd3522CAS |
(b) J. C. Liu, W. H. Bai, S. C. Niu, C. Zhu, S. M. Yang, A. L. Chen, Sci. Rep. 2014, 4, 7571.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Xiang, P. W. Wu, L. H. Tan, Y. Lu, Adv. Biochem. Eng./Biotechnol. 2014, 140, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFGlu7c%3D&md5=9440aa86d79012e4720d67c9b566787fCAS |
[21] (a) U. Kreibig, L. Genzel, Surf. Sci. 1985, 156, 678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkslygu7s%3D&md5=8ea11fb4576f6796088b232da901c930CAS |
(b) S. K. Ghosh, T. Pal, Chem. Rev. 2007, 107, 4797.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. G. Wu, L. Liu, S. S. Zhan, F. Z. Wang, P. Zhou, Analyst 2012, 137, 4171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsLjM&md5=9772efa507ba906dac48baeebcd87bf4CAS |
[23] S. S. Zhan, M. L. Yu, J. Lv, L. M. Wang, P. Zhou, Aust. J. Chem. 2014, 67, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslyrtLw%3D&md5=52d0129f8b8277306379c58a715c6837CAS |
[24] Z. L. Mei, H. Q. Chu, W. Chen, F. Xue, J. Liu, H. N. Xu, R. Zhang, L. Zheng, Biosens. Bioelectron. 2013, 39, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVektb3J&md5=779f11a243bd5e01ab39897a97454d0dCAS |
[25] (a) H. Peng, C. Soeller, J. Travas-Sejdic, Chem. Commun. 2006, 35, 3735.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. G. Wu, S. S. Zhan, F. Z. Wang, L. He, W. T. Zhi, P. Zhou, Chem. Commun. 2012, 48, 4459.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem. 1995, 67, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1Sitbg%3D&md5=6061e52f28c3be4a18631cdc7c0d18c5CAS |
[27] W. A. Zhao, M. A. Brook, Y. F. Li, ChemBioChem 2008, 9, 2363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12hsrzM&md5=dd233c95bbadc6e8890e3a4f75b5c730CAS |
[28] A. H. Liang, H. X. Ouyang, Z. L. Jiang, Analyst 2011, 136, 4514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itb3O&md5=b4abc897d72b862bd8ed9cc30d6f6907CAS |
[29] (a) X. Y. Gao, G. M. Xing, Y. L. Yang, X. L. Shi, R. Liu, W. G. Chu, L. Jing, F. Zhao, C. Ye, H. Yuan, X. H. Fang, C. Wang, Y. L. Zhao, J. Am. Chem. Soc. 2008, 130, 9190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2rsrg%3D&md5=a1e51a547e1c7efc4e3b69e9d2631311CAS |
(b) A. I. S. Holm, L. M. Nielsen, S. V. Hoffmann, S. B. Nielsen, Phys. Chem. Chem. Phys. 2010, 12, 9581.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Jeon, S. Lee, D. H. Manjunatha, C. Ban, Anal. Biochem. 2013, 439, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2ltrs%3D&md5=f1dab87a9a0c488d09bb3291a752ae46CAS | 23583275PubMed |
[31] A. Stafiej, K. Pyrzynska, F. Regan, J. Sep. Sci. 2007, 30, 985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVKjsLg%3D&md5=41863612ccf55eb35dd32474140bf3fdCAS | 17566331PubMed |
[32] R. A. Olowu, O. Arotiba, S. N. Mailu, T. T. Waryo, P. Baker, E. Iwuoha, Sensors 2010, 10, 9872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFagt7bP&md5=0c690e13566d306bb8475732f68c2e61CAS | 22163445PubMed |
[33] L. H. Yuan, J. Zhang, P. Zhou, J. X. Chen, R. Y. Wang, T. T. Wen, Y. Li, X. M. Zhou, H. J. Jiang, Biosens. Bioelectron. 2011, 29, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eitrrO&md5=7d43db930f681cf71f67e38943cefc14CAS |
[34] J. J. Zhang, J. T. Cao, G. F. Shi, K. J. Huang, Y. M. Liu, Y. H. Chen, Anal. Methods 2014, 6, 6796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2qsbrF&md5=ca82e3db63b3d0f0c806dc3083ab0578CAS |
[35] B. C. Zhu, O. A. Alsager, S. Kumar, J. M. Hodgkiss, J. Travas-Sejdic, Biosens. Bioelectron. 2015, 70, 398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1anur4%3D&md5=abb821aecce2b0e118194513f2645698CAS |