Asymmetric Remote C–H Functionalization: Use of Internal Olefins in Tandem Hydrometallation–Isomerization–Asymmetric Conjugate Addition Sequences*
Laura Mola A , Mireia Sidera A and Stephen P. Fletcher A BA Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
B Corresponding author. Email: stephen.fletcher@chem.ox.ac.uk
Australian Journal of Chemistry 68(3) 401-403 https://doi.org/10.1071/CH14556
Submitted: 11 September 2014 Accepted: 15 October 2014 Published: 21 November 2014
Abstract
We describe catalytic asymmetric C–C formation using terminal alkyl-metal nucleophiles generated from internal olefins through a ‘chain-walking’ isomerization mechanism. Hydrometallation of internal olefins with the Schwartz reagent gives the least hindered alkyl-zirconocene after thermal (60°C in THF) isomerization. After switching the solvent from THF to dichloromethane, the alkyl-zirconocenes can be used in copper-catalyzed asymmetric conjugate additions. Addition to a variety of cyclic α,β-unsaturated species were achieved in modest (22–50 %) yield with high (84–92 % ee) enantioselectivity. This work demonstrates that remote C–H functionalization coupled with asymmetric C–C bond formation is possible, but the present procedures are limited in terms of yield and olefin scope.
References
[1] R. G. Bergman, Nature 2007, 446, 391.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Wqs7w%3D&md5=002e4eab1aa286fdcb329cd637193f46CAS | 17377575PubMed |
[2] H. Schwarz, Acc. Chem. Res. 1989, 22, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslOitbk%3D&md5=17fc4b074060ce68cd6aeee1adba7875CAS |
[3] S. Das, C. D. Incarvito, R. H. Crabtree, G. W. Brudvig, Science 2006, 312, 1941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVahu78%3D&md5=09bf79d0e209eed3b3d1fba1f37247d7CAS | 16809537PubMed |
[4] M. S. Chen, M. C. White, Science 2007, 318, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1elsrbO&md5=32b9f11bcd0ff3824795c7e7583eb1c8CAS | 17975062PubMed |
[5] D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVWisrw%3D&md5=741adbe013efb713f63a2fddc2ff0080CAS | 22739317PubMed |
[6] I. Franzoni, C. Mazet, Org. Biomol. Chem. 2014, 12, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyqsLrF&md5=dd48e79be0d99437aeefbd10395b020cCAS | 24263253PubMed |
[7] B. M. Trost, R. C. Livingston, J. Am. Chem. Soc. 2008, 130, 11970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVyjtbs%3D&md5=74e593a3e3c106502c22f6e87683d76dCAS | 18702463PubMed |
[8] N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. Int. Ed. 2009, 48, 2854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVeht7o%3D&md5=b9ebef03d606429298ebd71d6a57979aCAS |
[9] T. S. Mei, H. H. Patel, M. S. Sigman, Nature 2014, 508, 340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWqsLo%3D&md5=8711876926399bb17adfcfb0f19d018dCAS | 24717439PubMed |
[10] S. Aspin, A.-S. Goutierre, P. Larini, R. Jazzar, O. Baudoin, Angew. Chem. Int. Ed. 2012, 51, 10808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaqtrrO&md5=e0313e3b51ebe17b9e506ddeb83396a8CAS |
[11] T. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, J. Am. Chem. Soc. 2012, 134, 16544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2mu7zF&md5=08af4e742a6d0f2e0ed11af2087210a5CAS | 22998107PubMed |
[12] T. Fukuyama, T. Doi, S. Minamino, S. Omura, I. Ryu, Angew. Chem. Int. Ed. 2007, 46, 5559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlKrt7g%3D&md5=8b979ec3c586002ce7f1e1a0cdb2111fCAS |
[13] J. Schwartz, J. A. Labinger, Angew. Chem. Int. Ed. Engl. 1976, 15, 333.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, Org. Synth. 1993, 71, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjt1ektL0%3D&md5=41b0242f3ce5ca8f0b8e03865af9496cCAS |
[15] P. J. Chirik, M. W. Day, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 1999, 121, 10308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1ejsb0%3D&md5=9776362f418e0ba265dfb801a0b1dcb3CAS |
[16] J. Endo, N. Koga, K. Morokuma, Organometallics 1993, 12, 2777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltl2ns7w%3D&md5=0f4d417848aa2101dea0a979aac795a0CAS |
[17] D. W. Hart, J. Schwartz, J. Am. Chem. Soc. 1974, 96, 8115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs12isQ%3D%3D&md5=d01dfd6892dc3b6235a51e8810261af9CAS |
[18] P. Wipf, W. J. Xu, J. H. Smitrovich, R. Lehmann, L. M. Venanzi, Tetrahedron 1994, 50, 1935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjt1agsLw%3D&md5=94ce4a03ba6eab758734fb8c8991c822CAS |
[19] E.-i. Negishi, T. Takahashi, Synthesis 1988, 1988, 1.
| Crossref | GoogleScholarGoogle Scholar |
[20] P. Wipf, H. Jahn, Tetrahedron 1996, 52, 12853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVKrtrk%3D&md5=2a7f347ad78de8c20c6b94fef8fc2fc7CAS |
[21] A. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I. Marek, Nature 2014, 505, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVCmsA%3D%3D&md5=323f264acbfb55aa4c6b6e8fb9d945f0CAS | 24317692PubMed |
[22] A. Alexakis, J. E. Bäckvall, N. Krause, O. Pamies, M. Dieguez, Chem. Rev. 2008, 108, 2796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ynsL4%3D&md5=2af013fb38e789ae45a9115e44d778f0CAS | 18671436PubMed |
[23] S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurs%3D&md5=e8ede3c3c757672f45a9c789892e1254CAS | 18698733PubMed |
[24] T. Thaler, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqu70%3D&md5=aea1262ff403c61428f4100f7e0aa0a7CAS |
[25] Copper-Catalyzed Asymmetric Synthesis (Eds A. Alexakis, N. Krause, S. Woodward) 2014 (Wiley-VCH: Weinheim).
[26] R. M. Maksymowicz, P. M. C. Roth, S. P. Fletcher, Nat. Chem. 2012, 4, 649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVehtrrK&md5=0b7ca8e4ea2bd79a8fa57d6f01a249c0CAS | 22824897PubMed |
[27] R. M. Maksymowicz, P. M. C. Roth, A. L. Thompson, S. P. Fletcher, Chem. Commun. 2013, 49, 4211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1CjtLo%3D&md5=c7a5ad8b5daaa949a48479491802d604CAS |
[28] R. M. Maksymowicz, M. Sidera, P. M. C. Roth, S. P. Fletcher, Synthesis 2013, 45, 2662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVeiur3O&md5=ab33c5c51803be0ccaaac60fee1c5df5CAS |
[29] M. Sidera, P. M. C. Roth, R. M. Maksymowicz, S. P. Fletcher, Angew. Chem. Int. Ed. 2013, 52, 7995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGis7w%3D&md5=d20e64a342d5aef109dcb4d332f5a1a5CAS |
[30] P. M. C. Roth, M. Sidera, R. M. Maksymowicz, S. P. Fletcher, Nat. Protoc. 2014, 9, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ejtL8%3D&md5=bfd0bb1309c35b4a606e9928614d0ec1CAS |
[31] E. E. Maciver, R. M. Maksymowicz, N. Wilkinson, P. M. C. Roth, S. P. Fletcher, Org. Lett. 2014, 16, 3288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpt1Krur0%3D&md5=144abcd6c4405daccaf8f85e3ea04722CAS | 24893570PubMed |