Heterometallic Tetranuclear {Mn2IIILn2III}n 1D Coordination Polymers: Employing Sulfonate Ligands as Connecting Groups
Stuart K. Langley A , Boujemaa Moubaraki A and Keith S. Murray A BA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Corresponding author. Email: keith.murray@monash.edu
Australian Journal of Chemistry 67(11) 1601-1606 https://doi.org/10.1071/CH14385
Submitted: 14 June 2014 Accepted: 9 July 2014 Published: 10 September 2014
Abstract
The synthesis and magnetic characterisation of a new series of 1D {Mn2IIILn2III}n (Ln = Pr, Nd, Gd, Tb, Dy) coordination polymers are described. The repeating unit consists of a tetranuclear fragment made up of two MnIII and two LnIII ions exhibiting a butterfly/planar-diamond motif. The MnIII ions are situated in the body of the butterfly, with the LnIII ions occupying the outer wing sites. Each tetranuclear unit is linked by two bridging sulfonate ligands resulting in a 1D coordination polymer. Direct current (dc) magnetic measurements reveal the presence of weak magnetic interactions which are quantified for the {Mn2IIIGd2III}n complex, with exchange J values for the MnIII–GdIII and MnIII–MnIII pairwise interactions of 0.04 and 1.69 cm–1, respectively. Alternating current (ac) susceptibility measurements reveal an absence of out-of-phase (χM′′) signals at all temperatures and frequencies utilising a 3.5 Oe oscillating ac field and a zero static dc field. Application of a bias dc field (2000 Oe), however, reveals field induced slow relaxation of the magnetisation for the DyIII complex.
References
[1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, MRS Bull. 2000, 25, 66.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosl2qurk%3D&md5=ad45fbf067954b74e1e7b04672e41341CAS |
[2] Spin-Crossover Materials: Properties and Applications (Ed. M. A. Halcrow) 2013 (John Wiley and Sons Ltd: Chichester).
[3] Y.-Z. Zheng, G.-J. Zhou, Z. Zhengab, R. E. P. Winpenny, Chem. Soc. Rev. 2014, 43, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWhsb8%3D&md5=8778f52d986b2e2924dd15647a6afa4fCAS | 24296785PubMed |
[4] H. Miyasaka, R. Clérac, Bull. Chem. Soc. Jpn. 2005, 78, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2itbvO&md5=67f52f4547d0c6cd6679f5b748fe8641CAS |
[5] (a) G. Aromi, E. K. Brechin, in Structure and Bonding (Ed. R. Winpenny) 2006, Vol. 122, pp. 1–67 (Springer: Berlin).
(b) D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) C. J. Schneider, J. D. Cashion, N. F. Chilton, C. Etrillard, M. Fuentealba, J. A. K. Howard, J.-F. Létard, C. Milsmann, B. Moubaraki, H. A. Sparkes, S. R. Batten, K. S. Murray, Eur. J. Inorg. Chem. 2013, 850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltrfJ&md5=9932a67df634544758e3a0ce3474920dCAS |
(b) I. A. Gass, S. Tewary, G. Rajaraman, M. Asadi, D. W. Lupton, B. Moubaraki, G. Chastanet, J.-F. Létard, K. S. Murray, Inorg. Chem. 2014, 53, 5055.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) N. F. Chilton, S. K. Langley, B. Moubaraki, A. Soncini, K. S. Murray, Chem. Sci. 2013, 4, 1719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7g%3D&md5=afab6d1dda9dbd497293392ca5ac14ddCAS |
(b) M. Nematirad, W. J. Gee, S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, S. R. Batten, Dalton Trans. 2012, 41, 13711.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. R. Ganivet, B. Ballesteros, G. de la Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. – Eur. J. 2013, 19, 1457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmsLnE&md5=22223430cdc3dee5c5a74abb672bcd2aCAS | 23197446PubMed |
(b) R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGjtbjF&md5=4101bde623f593dbeb5e8396b3b2399cCAS | 21838285PubMed |
[10] (a) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGmt7o%3D&md5=65fe22107fb6ddbc402f9287927f603eCAS | 21697874PubMed |
(b) S. Demir, J. M. Zadrozny, M. Nippe, J. R. Long, J. Am. Chem. Soc. 2012, 134, 18546.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru, K. S. Murray, Angew. Chem. Int. Ed. 2013, 52, 12014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ntbrO&md5=36f93be26ac09da3a2720c35e4e79a15CAS |
(b) S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Chem. Sci 2014, 5, 3246.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. K. Langley, D. P. Wielechowski, B. Moubaraki, B. F. Abrahams, K. S. Murray, Aust. J. Chem. 2014, 67, 1581.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) S. K. Langley, B. Moubaraki, K. J. Berry, K. S. Murray, Dalton Trans. 2010, 39, 4848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2ht7o%3D&md5=a69e5574a1d0ee092b47571bdc5c3c64CAS | 21491697PubMed |
(b) S. K. Langley, B. Moubaraki, K. S. Murray, Dalton Trans. 2010, 39, 5066.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. F. Chilton, S. K. Langley, B. Moubaraki, K. S. Murray, Chem. Commun. 2010, 46, 7787.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Dalton Trans. 2011, 40, 12201.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. K. Langley, L. Ungur, N. F. Chilton, B. Moubaraki, L. Chibotaru, K. S. Murray, Chem. – Eur. J. 2011, 17, 9209.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Dalton Trans. 2012, 41, 9789.
| Crossref | GoogleScholarGoogle Scholar |
[13] E. K. Brechin, Chem. Commun. 2005, 5141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFajtL%2FI&md5=ed627f76502723b9c9451290716f1380CAS |
[14] (a) S. K. Langley, M. Helliwell, J. Raftery, E. I. Tolis, R. E. P. Winpenny, Chem. Commun. 2004, 142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslahtA%3D%3D&md5=c07cb91b9c98e7adc270c6d48349903eCAS |
(b) S. J. Langley, M. Helliwell, R. Sessoli, P. Rosa, W. Wernsdorfer, R. E. P. Winpenny, Chem. Commun. 2005, 5029.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. K. Langley, M. Helliwell, R. Sessoli, S. J. Teat, R. E. P. Winpenny, Inorg. Chem. 2008, 47, 497.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. K. Langley, M. Helliwell, R. Sessoli, S. J. Teat, R. E. P. Winpenny, Dalton Trans. 2009, 3102.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. K. Langley, M. Helliwell, S. J. Teat, R. E. P. Winpenny, Dalton Trans. 2012, 41, 12807.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. K. Langley, M. Helliwell, S. J. Teat, R. E. P. Winpenny, Inorg. Chem. 2014, 53, 1128.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. P. Coté, G. K. H. Shimizu, Coord. Chem. Rev. 2003, 245, 49.
| Crossref | GoogleScholarGoogle Scholar |
[16] N. E. Chakov, W. Wernsdorfer, K. A. Abboud, D. N. Hendrickson, G. Christou, Dalton Trans. 2003, 2243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGksL4%3D&md5=99d3c1ddfbf770b04e3400feeca693a2CAS |
[17] C.-H. Chen, J. Cai, C.-Z. Liao, X.-L. Feng, X.-M. Chen, S. W. Ng, Inorg. Chem. 2002, 41, 4967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFSks7g%3D&md5=f28a52f7be122f3eae13a91d6c54e74bCAS | 12230402PubMed |
[18] P. L. Dedert, T. Sorrell, T. J. Marks, J. A. Ibers, Inorg. Chem. 1982, 21, 3509.
[19] C. Papatriantafyllopoulou, E. Manessi-Zoupa, A. Escuer, S. P. Perlepes, Inorg. Chim. Acta 2009, 362, 634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Oks70%3D&md5=98e4272c6d5ea84af07954e4fd76238dCAS |
[20] S. K. Langley, R. A. Stott, N. F. Chilton, B. Moubaraki, K. S. Murray, Chem. Commun. 2011, 47, 6281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGgsb0%3D&md5=ebcd64185afe3acb8da0bf7bce4690e9CAS |
[21] For an example, see: T. Taguchi, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2010, 49, 10579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWiurnL&md5=e0b9b22d80855e3c7bc6bddeef05abdcCAS | 20961147PubMed |
[22] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |
[23] W. J. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=9419610f4cb6fb932fb5c42cc5bcbb43CAS |
[24] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |
[25] (a) S. K. Langley, N. F. Chilton, L. Ungur, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Inorg. Chem. 2012, 51, 11873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWksLvN&md5=7c414cdef6c22f7e0dadcef742a32ef7CAS | 23072350PubMed |
(b) S. K. Langley, L. Ungur, N. F. Chilton, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Inorg. Chem. 2014, 53, 4303.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Inorg. Chem. 2013, 52, 7183.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Chem. Commun. 2013, 49, 6965.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) A. Mishra, W. Wernsdorfer, S. Parsons, G. Christou, E. K. Brechin, Chem. Commun. 2005, 2086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCisLY%3D&md5=fe2aa29149919f19de91b13e181c79faCAS |
(b) C. Benelli, M. Murrie, S. Parsons, R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 1999, 4125.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Mukherjee, M. R. Daniels, R. Bagai, K. A. Abboud, G. Christou, C. Lampropoulos, Polyhedron 2010, 29, 54.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. P. Guedes, S. Soriano, L. A. Mercante, N. L. Speziali, M. A. Novak, M. Andruh, M. G. F. Vaz, Inorg. Chem. 2013, 52, 8309.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. N. Akhtar, Y. Lan, V. Mereacr, R. Clerac, C. E. Anson, A. K. Powell, Polyhedron 2009, 28, 1698.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. S. R. Chesman, D. R. Turner, K. J. Berry, N. F. Chilton, B. Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Dalton Trans. 2012, 41, 11402.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. Papatriantafyllopoulou, K. A. Abboud, G. Christou, Inorg. Chem. 2011, 50, 8959.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) V. Mereacre, A. Baniodeh, C. E. Anson, A. K. Powell, J. Am. Chem. Soc. 2011, 133, 15335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrs7vM&md5=7e528a842e463186d9a7c61ffe72e1a4CAS | 21866977PubMed |
(b) H. Xiang, V. Mereacre, Y. Lan, T.-B. Lu, C. E. Anson, A. K. Powell, Chem. Commun. 2013, 49, 7385.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Baniodeh, Y. Lan, G. Novitchi, V. Mereacre, A. Sukhanov, M. Ferbinteanu, V. Voronkova, C. E. Anson, A. K. Powell, Dalton Trans. 2013, 42, 8926.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Peng, G. E. Kostakis, Y. Lan, A. K. Powell, Dalton Trans. 2013, 42, 46.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Murugesu, A. Mishra, W. Wernsdorfer, K. A. Abboud, G. Christou, Polyhedron 2006, 25, 613.
| Crossref | GoogleScholarGoogle Scholar |
[28] K. C. Mondal, A. Sundt, Y. Lan, G. E. Kostakis, O. Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed. 2012, 51, 7550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ehu7c%3D&md5=3247323213b8216ac0355fe6600a8755CAS |
[29] N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKlsro%3D&md5=29bb57c62a460b863fb231f00759c069CAS | 23386394PubMed |
[30] (a) J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ju7fE&md5=fd47d8244717575c9b72eb73785b2460CAS |
(b) N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, A. Soncini, Nat. Commun. 2013, 4, 2551.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Bhunia, M. T. Gamer, L. Ungur, L. F. Chibotaru, A. K. Powell, Y. Lan, P. W. Roesky, F. Menges, C. Riehn, G. Niedner-Schatteburg, Inorg. Chem. 2012, 51, 9589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSisLY%3D&md5=ff79dcc992e4b0076a1dce289897502bCAS | 22519653PubMed |