Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chitosan–Zinc Oxide Nanoparticles Combined with Dispersive Liquid–Liquid Microextraction for the Determination of BTEX in Water Samples

Mostafa Khajeh A B , Leyla Azarsa A and Mansoureh Rakhshanipour A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Zabol, PO Box 98615-538, Zabol, Iran.

B Corresponding author. Email: m_khajeh@uoz.ac.ir

Australian Journal of Chemistry 68(3) 481-487 https://doi.org/10.1071/CH14353
Submitted: 25 April 2014  Accepted: 22 June 2014   Published: 22 September 2014

Abstract

In this study, chitosan–zinc oxide nanoparticles were used as an adsorbent matrix for solid-phase extraction and combined with dispersive liquid–liquid microextraction (SPE–DLLME) for determination of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) in water samples. The eluent of SPE was used as the dispersive solvent of the DLLME for further purification and enrichment of the BTEX prior to gas chromatography-flame ionization detector analysis. The effect of variables, including amount of adsorbent, sample and eluent flow rate, type and volume of extraction and dispersive solvent, salt concentration, and extraction time, was investigated and they were optimized. Under the optimum conditions, good linearity for all BTEX with determination coefficients in the range of 0.9993 < r2 < 0.9997, suitable precision (1.4 % < RSD <1.9 %; where RSD refers to relative standard deviation), and low detection limits (0.5–1.1 µg L–1) were achieved. The current chitosan–zinc oxide nanoparticles SPE–DLLME procedure combines the advantages of SPE and DLLME, and was applied for determination of BTEX in water samples and acceptable recoveries were obtained.


References

[1]  F. Esteve-Turrillas, S. Armenta, S. Garrigues, A. Pastor, M. de la Guardia, Anal. Chim. Acta 2007, 587, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKlt7o%3D&md5=094b0d9347393ae6abb0370c449b8640CAS | 17386758PubMed |

[2]  E. Aguilera-Herrador, R. Lucena, S. Cardenas, M. Valcarcel, J. Chromatogr. A 2008, 1201, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFSnsLs%3D&md5=df2583791871a865f0970536b477a802CAS | 18586254PubMed |

[3]  M. Khajeh, F. Musavi Zadeh, Bull. Environ. Contam. Toxicol. 2012, 89, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVKjsrg%3D&md5=1820c699466d87053bdf741c8bce08b6CAS | 22555540PubMed |

[4]  H. Yan, H. Wang, X. Qin, B. Liu, J. Du, J. Pharm. Biomed. Anal. 2011, 54, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmt7vF&md5=ef80ca9d2bca24c490987d26cf1e9658CAS | 20828967PubMed |

[5]  Y. Zhang, X. Zhang, B. Jiao, Food Chem. 2014, 159, 367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslarur0%3D&md5=94eecae180800ff454c4c6e58852cb08CAS | 24767068PubMed |

[6]  G. Song, C. Zhu, Y. Hu, J. Chen, H. Cheng, J. Sep. Sci. 2013, 36, 1644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVyltL0%3D&md5=bd31557f17207469b63117fa0c94aa15CAS | 23456788PubMed |

[7]  M. Anastassiades, S. J. Lehotay, D. Stajnbaher, F. J. Schenck, J. AOAC Int. 2003, 86, 412.
         | 1:CAS:528:DC%2BD3sXivFOjsLc%3D&md5=4a8793714453721f95ab189466cc322aCAS | 12723926PubMed |

[8]  Q. Wu, Z. Li, C. Wang, C. Wu, W. Wang, Z. Wang, Food Analytical Methods 2011, 4, 559.

[9]  G. Crini, Bioresour. Technol. 2006, 97, 1061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOjur4%3D&md5=18f392845a0aa4b70ee5d511c2d0bedfCAS | 15993052PubMed |

[10]  M. Khajeh, S. Laurent, K. Dastafkan, Chem. Rev. 2013, 113, 7728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFeru7fE&md5=3cb3fffcc4301d596670a005292a744aCAS | 23869773PubMed |

[11]  M. Khajeh, Int. J. Environ. Anal. Chem. 2009, 89, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFSqt70%3D&md5=2870135d73474a1b6c7a993f26f7a53dCAS |

[12]  W. S. Wan Ngah, L. C. Teong, M. A. K. M. Hanafiah, Carbohydr. Polym. 2011, 83, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WmsLbN&md5=72ec9c5b7408f4d62cf6f9541fdba681CAS |

[13]  P. Miretzky, A. F. Cirelli, J. Fluorine Chem. 2011, 132, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Kit7o%3D&md5=e2e9c3c9d95c0d37f8014702c309e3c9CAS |

[14]  C. Dong, W. Chen, C. Liu, Y. Liu, H. Liu, Colloids Surf., A 2014, 446, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVCmu7c%3D&md5=617aacaf5e33b611772620ffb18f19feCAS |

[15]  M. Chang, R. Juang, J. Colloid Interface Sci. 2004, 278, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Cms7w%3D&md5=0a5383535ec576d679376d421c463504CAS | 15313633PubMed |

[16]  C. Carrillo-Carrión, R. Lucena, S. Cardenas, M. Valcarce, J. Chromatogr. A 2007, 1171, 1.
         | Crossref | GoogleScholarGoogle Scholar | 17919647PubMed |

[17]  X. Ma, M. Huang, Z. Li, J. Wu, J. Hazard. Mater. 2011, 194, 24.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWlt7%2FM&md5=c39bd463613f2acdaf794818905394e0CAS | 21871732PubMed |

[18]  S. Moradi Dehaghi, B. Rahmanifar, A. Mashinchian Moradi, P. Aberoomand Azar, J. Saudi Chem. Soc. 2014, in press.

[19]  Q. Wu, C. Wang, Z. Liu, C. Wu, X. Zeng, J. Wen, Z. Wang, J. Chromatogr. A 2009, 1216, 5504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKlsLk%3D&md5=0bf32ff876d6b0b92cd0abd4c4402407CAS | 19523645PubMed |

[20]  M. Khajeh, E. Jahanbin, Chemom. Intell. Lab. Syst. 2014, 135, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFSlsbo%3D&md5=7d9290a5856188606aa5cc04747d0282CAS |

[21]  R. Fontana, N. B. Lana, L. D. Martinez, J. C. Altamirano, Talanta 2010, 82, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVyktb4%3D&md5=de25a9dfdc1872356c0d735f003e5b8dCAS |

[22]  J. C. Flórez Menéndez, M. L. Fernandez Sanchez, J. E. Sanchez Uria, E. Fernandez Martinez, A. Sanz-Medel, Anal. Chim. Acta 2000, 415, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Sarafraz-Yazdi, A. H. Amiri, Z. Es’haghi, Chemosphere 2008, 71, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKlsLc%3D&md5=f2745e32ad15f0f61127ae42416feb33CAS | 18221982PubMed |

[24]  J. X. Wang, D. Q. Jiang, X. P. Yan, Talanta 2006, 68, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1alsA%3D%3D&md5=d5df1aa6bb10fe22cf01e5c02534799fCAS | 18970414PubMed |

[25]  M. Soylak, Y. E. Unsal, Toxicol. Environ. Chem. 2012, 94, 1480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOgtr7N&md5=563e4bc4103fb3d0ad16b2a25eec23cdCAS |

[26]  Z. A. Al Othman, E. Yilmaz, M. Habila, M. Soylak, Desalin. Water Treat. 2013, 51, 6770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12lsLg%3D&md5=58115fd351a990bba75aa2d0d6122f42CAS |

[27]  Y. E. Unsal, M. Tuzen, M. Soylak, Turk. J. Chem. 2014, 38, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXot12gtbY%3D&md5=10bd42d923c381c398947a37e464f417CAS |