Dinuclear Lanthanide–Carboxylate Compounds: Field-Induced Slow Relaxation of Magnetization for Dysprosium(iii) Analogue
Yi-Lei Li A , Qing-Yan Liu A C , Cai-Ming Liu B , Yu-Ling Wang A C and Ling Chen AA College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
B Beijing National Laboratory for Molecular Sciences, Institution of Chemistry, Chinese Academy of Sciences, Center for Molecular Sciences, Beijing 100190, China.
C Corresponding authors. Emails: qyliuchem@hotmail.com; ylwang@jxnu.edu.cn
Australian Journal of Chemistry 68(3) 488-492 https://doi.org/10.1071/CH14348
Submitted: 30 May 2014 Accepted: 30 June 2014 Published: 15 September 2014
Abstract
Three chiral dinuclear lanthanide compounds, Ln2(µ2-L)4(L)2(phen)2 (Ln = Dy (1), Gd (2), and Er (3); phen = 1,10-phenanthroline), have been synthesized using the (S)-(+)-2-(6-methoxy-2-naphthyl)propionic acid (HL) ligand. The two lanthanide centres in compound Ln2(µ2-L)4(L)2(phen)2 are bridged by four carboxylate groups to give a dinuclear Ln2(µ2-L)4 core. The square antiprismatic coordination environment for each lanthanide centre is further completed by a chelating carboxylate group from another L– ligand and two nitrogen atoms from the phen ligand. A weak antiferromagnetic interaction between the two GdIII ions is observed in compound 2. The Dy analogue displays field-induced slow magnetic relaxation behaviour with an effective energy barrier Ueff/k of 17.24(2) K and a pre-exponential factor τ0 of 2.7(1) × 10–6 s. However, no slow relaxation phenomenon was observed for the Er derivative even in the presence of 2 kOe applied field.
References
[1] (a) J. C. G. Bünzli, C. Piguet, Chem. Rev. 2002, 102, 1897.| Crossref | GoogleScholarGoogle Scholar |
(b) M. N. Leuenberger, D. Loss, Nature 2001, 410, 789.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 2003, 302, 1015.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Y. N. Guo, G. F. Xu, P. Gamez, L. Zhao, S. Y. Lin, R. Deng, J. K. Tang, H. J. Zhang, J. Am. Chem. Soc. 2010, 132, 8538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCnsLw%3D&md5=25a6841e41ff6f1b0cda44fa09351cc8CAS | 20527747PubMed |
(b) F. Habib, P. H. Lin, J. Long, I. Korobkov, W. Wernsdorfer, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 8830.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. J. Hewitt, J. Tang, N. T. Madhu, C. E. Anson, Y. Lan, J. Luzon, M. Etienne, R. Sessoli, A. K. Powell, Angew. Chem., Int. Ed. 2010, 49, 6352.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem., Int. Ed. 2011, 50, 6530.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. H. Guo, J. L. Liu, Z. M. Zhang, L. Ungur, L. F. Chibotaru, J. D. Leng, F. S. Guo, M. L. Tong, Inorg. Chem. 2012, 51, 1233.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. P. Yang, X. F. Gao, H. B. Song, S. Zhang, X. L. Mei, L. C. Li, D. Z. Liao, Inorg. Chem. 2011, 50, 720.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFagtrw%3D&md5=b87dd5edc904fbdc22e1fa8f96d54569CAS | 12059272PubMed |
(b) J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. E. Car, M. Perfetti, M. Mannini, A. Favre, A. Caneschi, R. Sessoli, Chem. Commun. 2011, 47, 3751.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKlsLg%3D&md5=fa49afbd486ceb68bd60e819ec662982CAS | 23550940PubMed |
(b) P. Zhang, Y. N. Guo, J. K. Tang, Coord. Chem. Rev. 2013, 257, 1728.
| Crossref | GoogleScholarGoogle Scholar |
[5] S. K. Langley, N. F. Chilton, L. Ungur, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Inorg. Chem. 2012, 51, 11873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWksLvN&md5=7c414cdef6c22f7e0dadcef742a32ef7CAS | 23072350PubMed |
[6] F. Habib, M. Murugesu, Chem. Soc. Rev. 2013, 42, 3278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFems7k%3D&md5=df0acfd9534461177a2389d811ff61c0CAS | 23334210PubMed |
[7] F. Habib, G. Brunet, V. Vieru, I. Korobkov, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2013, 135, 13242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWltbfK&md5=612ba091d7acb17e0fff5604278d6f6fCAS | 23964606PubMed |
[8] J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGmt7o%3D&md5=65fe22107fb6ddbc402f9287927f603eCAS | 21697874PubMed |
[9] S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru, K. S. Murray, Angew. Chem., Int. Ed. 2013, 52, 12014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ntbrO&md5=36f93be26ac09da3a2720c35e4e79a15CAS |
[10] (a) G. L. J. A. Rikken, E. Raupach, Nature 1997, 390, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvF2htbc%3D&md5=ba0d13d0ad51a57039827be8e9909b6aCAS |
(b) C. Train, R. Gheorghe, V. Krstic, L. M. Chamoreau, N. S. Ovanesyan, G. L. J. A. Rikken, M. Gruselle, M. Verdaguer, Nat. Mater. 2008, 7, 729.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) L. Bogani, L. Cavigli, K. Bernot, R. Sessoli, M. Gurioli, D. Gatteschi, Mater. Chem. 2006, 16, 2587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVyhsb8%3D&md5=88f1529f667491b62e78a31a789f82c9CAS |
(b) C. Train, T. Nuida, R. Gheorghe, M. Gruselle, S. I. Ohkoshi, J. Am. Chem. Soc. 2009, 131, 16838.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) C. M. Liu, R. G. Xiong, D. Q. Zhang, D. B. Zhu, J. Am. Chem. Soc. 2010, 132, 4044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVygsrY%3D&md5=aa8d82ca544629439d41755cc4407e71CAS | 20218683PubMed |
(b) H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, C. L. Yu, Inorg. Chem. 2009, 48, 10177.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) D. T. Thielemann, A. T. Wagner, Y. Lan, C. E. Anson, M. T. Gamer, A. K. Powell, P. W. Roesky, Dalton Trans. 2013, 42, 14794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqs7jK&md5=b74236c9419d8af77d758077482f8964CAS | 23986134PubMed |
(b) K. Wang, S. Zeng, H. Wang, J. Dou, J. Jiang, Inorg. Chem. Front. 2014, 1, 167.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Novitchi, G. Pilet, L. Ungur, V. V. Moshchalkov, W. Wernsdorfer, L. F. Chibotaru, D. Luneau, A. K. Powell, Chem. Sci. 2012, 3, 1169.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) D. P. Li, X. P. Zhang, T. W. Wang, B. B. Ma, C. H. Li, Y. Z. Li, X. Z. You, Chem. Commun. 2011, 47, 6867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlagsLo%3D&md5=d5bdcedda8c9eb2843c1dbdad0fae692CAS |
(b) C. M. Liu, D. Q. Zhang, D. B. Zhu, Inorg. Chem. 2013, 52, 8933.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. L. Li, C. L. Chen, Y. L. Gao, C. M. Liu, X. L. Feng, Y. H. Gui, S. M. Fang, Chem. –Eur. J. 2012, 18, 14632.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. P. Li, T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li, X. Z. You, Chem. Commun. 2010, 46, 2929.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) Y. Li, F.-K. Zheng, X. Liu, W.-Q. Zou, G.-C. Guo, C.-Z. Lu, J.-S. Huang, Inorg. Chem. 2006, 45, 6308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Slsb4%3D&md5=2eeedf1e52dbd8ab25ccfc96bdab83b4CAS | 16878940PubMed |
(b) Y.-Z. Zheng, M. Evangelisti, R. E. P. Winpenny, Angew. Chem., Int. Ed. 2011, 50, 3692.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. Panagiotopoulos, T. F. Zafiropoulos, S. P. Perlepes, E. Bakalbassis, I. Masson-Ramade, O. Kahn, A. Terzis, C. P. Raptopoulou, Inorg. Chem. 1995, 34, 4918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1equr0%3D&md5=d4cab45e88689daef88b488f51df2849CAS |
[17] J. Long, F. Habib, P. H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 5319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKnsrg%3D&md5=e182ba0136043100451eeec44f5bdd91CAS | 21425794PubMed |
[18] F. Habib, J. Long, P. H. Lin, I. Korobkov, L. Ungur, W. Wernsdorfer, L. Chibotaru, M. Murugesu, Chem. Sci. 2012, 3, 2158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12qtrg%3D&md5=3b38df097cde889b69f78428f3a08c5bCAS |
[19] (a) Y. J. Gao, G. F. Xu, L. Zhao, J. K. Tang, Z. L. Liu, Inorg. Chem. 2009, 48, 11495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhsb7O&md5=b4e8e4dfda0a292e74395cfc3346a04aCAS |
(b) Y.-M. Song, F. Luo, M.-B. Luo, Z.-W. Liao, G.-M. Sun, X.-Z. Tian, Y. Zhu, Z.-J. Yuan, S.-J. Liu, W.-Y. Xu, X.-F. Feng, Chem. Commun. 2012, 48, 1006.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. W. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXks1ehsb4%3D&md5=22f39760ac389b5b49a42d16c4f823b6CAS |
[21] G. M. Sheldrick, SADABS 1995 (University of Göttingen: Göttingen).
[22] G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen).