Analysis of the Enol–Keto Tautomers of Indole-3-pyruvic Acid
Nathan D. Tivendale A B , Noel W. Davies C , James Horne C , John J. Ross B and Jason A. Smith A DA School of Physical Sciences: Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.
B School of Biological Sciences: Plant Science, University of Tasmania, Hobart, Tas. 7001, Australia.
C Central Science Laboratory, University of Tasmania, Hobart, Tas. 7001, Australia.
D Corresponding author. Email: Jason.Smith@utas.edu.au
Australian Journal of Chemistry 68(2) 345-348 https://doi.org/10.1071/CH14343
Submitted: 29 May 2014 Accepted: 17 September 2014 Published: 15 December 2014
Abstract
Indole-3-pyruvic acid (IPyA) is an important naturally occurring biosynthetic intermediate whose quantitation by standard analytic techniques can be complicated as it can exist as either the keto or enol tautomer. Here, we present a detailed analysis of the tautomerism of IPyA and provide further evidence that the two tautomers of IPyA may be readily separated by ultra high-performance liquid chromatography and that the relative proportions of each form may be controlled using temperature and pH.
References
[1] V. Kriechbaumer, P. Wang, C. Hawes, B. M. Abell, Plant J. 2012, 70, 292.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFegt7Y%3D&md5=329a48fed05b4d4c214b37170545d7eaCAS | 22233288PubMed |
[2] K. Mashiguchi, K. Tanaka, T. Sakai, S. Sugawara, H. Kawaide, M. Natsume, A. Hanada, T. Yaeno, K. Shirasu, H. Yao, P. McSteen, Y. Zhao, K. Hayashi, Y. Kamiya, H. Kasahara, Proc. Natl. Acad. Sci. USA 2011, 108, 18512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymurvN&md5=21cdc9627b0d8ffc93efd7be8762faaeCAS | 22025724PubMed |
[3] A. N. Stepanova, J. Robertson-Hoyt, J. Yun, L. M. Benavente, D. Xie, K. Doležal, A. Schlereth, G. Jürgens, J. M. Alanso, Cell 2008, 133, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOks7k%3D&md5=8cb3ecc90eb01c9f92ce59ff3beb74ddCAS | 18394997PubMed |
[4] A. N. Stepanova, J. Yun, L. Robles, O. Novak, W. He, H. Guo, K. Ljung, J. M. Alanso, Plant Cell 2011, 23, 3961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFOktw%3D%3D&md5=fa2e5c785a9a1c4d3492fb3ba6750c85CAS | 22108406PubMed |
[5] Y. Tao, J. L. Ferrer, K. Ljung, F. Pojer, F. Hong, J. A. Long, L. Li, J. E. Moreno, M. E. Bowman, L. J. Ivans, Y. Cheng, J. Lim, Y. Zhao, C. L. Ballaré, G. Sandberg, J. P. Noel, J. Chory, Cell 2008, 133, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOks7o%3D&md5=d96c6d3d7d632f6ba32f218851944a09CAS | 18394996PubMed |
[6] C. Won, X. Shen, K. Mashiguchi, Z. Zheng, X. Dai, Y. Cheng, H. Kasahara, Y. Kamiya, J. Chory, Y. Zhao, Proc. Natl. Acad. Sci. USA 2011, 108, 18518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymu7zK&md5=9293e14cd8010469b25b893fcc8f3c2cCAS | 22025721PubMed |
[7] N. D. Tivendale, S. E. Davidson, N. W. Davies, J. A. Smith, M. Dalmais, A. I. Bendahmane, L. J. Quittenden, L. Sutton, R. K. Bala, C. Le Signor, R. Thompson, J. Horne, J. B. Reid, J. J. Ross, Plant Physiol. 2012, 159, 1055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsbvF&md5=156584d695c470c2e9f431fc587557e1CAS | 22573801PubMed |
[8] (a) Y. Cheng, X. Dai, Y. Zhao, Genes Dev. 2006, 20, 1790.
| 1:CAS:528:DC%2BD28XmvV2ksb4%3D&md5=86ed686d24cb1256670227df8827a455CAS | 16818609PubMed |
(b) Y. Cheng, X. Dai, Y. Zhao, Plant Cell 2007, 19, 2430.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. J. Davies, Plant Hormones: Biosynthesis, Signal Transduction, Action! 2004 (Kluwer Academic Publishers: London).
[10] A. W. Woodward, B. Bartel, Ann. Bot. 2005, 95, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFOrsbs%3D&md5=a0f071f115de7e65ae08ff1d9197cd4cCAS | 15749753PubMed |
[11] J. Koga, Biochim. Biophys. Acta 1995, 1249, 1.
| Crossref | GoogleScholarGoogle Scholar | 7766676PubMed |
[12] J. Koga, T. Adachi, H. Hidaka, Mol. Genet. Genomics 1991, 226, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjsFansw%3D%3D&md5=faf7ba777aadbbe6c23a5e8afdd87830CAS |
[13] J. Koga, T. Adachi, H. Hidaka, J. Biol. Chem. 1992, 267, 15823.
| 1:CAS:528:DyaK38XltVKqur0%3D&md5=0061d21199f36fbb576e7cfb6c6a9f7fCAS | 1639814PubMed |
[14] J. Koga, T. Adachi, H. Hidemasa, Agric. Biol. Chem. 1991, 55, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVCjsbg%3D&md5=563be8370c8a719cd07f4603f581c819CAS |
[15] J. Koga, K. Syono, T. Ichikawa, A. Takashi, Biochim. Biophys. Acta 1994, 1209, 241.
| Crossref | GoogleScholarGoogle Scholar | 7811697PubMed |
[16] M. Malhotra, S. Srivastava, Environ. Microbiol. 2008, 10, 1365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFyhtrs%3D&md5=616356f1e346c386d1bf99cafdd1d2efCAS | 18248455PubMed |
[17] C. L. Patten, B. R. Glick, Can. J. Microbiol. 1996, 42, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVGjsbc%3D&md5=1d492940b63e60c3d39889871d3c049fCAS | 8868227PubMed |
[18] E. A. Tsavkelova, T. A. Cherdyntseva, S. Y. Klimova, A. I. Shestakov, S. G. Botina, A. I. Netrusov, Arch. Microbiol. 2007, 188, 655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyrt7jJ&md5=416af5fd5a96a3f7a7c4b2a923818875CAS | 17687544PubMed |
[19] O. Vandeputte, S. Öden, A. Mol, D. Vereecke, K. Goethals, M. E. Jaziri, E. Prinsen, Appl. Environ. Microbiol. 2005, 71, 1169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOju7o%3D&md5=bcc44e142c300217359ae0bc1b368f69CAS | 15746315PubMed |
[20] K. Schwarz, Arch. Biochem. Biophys. 1961, 92, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c%2FmvV2isg%3D%3D&md5=1622744d89dd3641d569f431eec125bbCAS | 13749185PubMed |
[21] C. Zhou, D. Hill, Magn. Reson. Chem. 2007, 45, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ens70%3D&md5=ec66c49187e4ac8e2fcbb4633a4d669cCAS | 17154239PubMed |
[22] Z. Zheng, Y. Guo, O. Novák, X. Dai, Y. Zhao, K. Ljung, J. P. Noel, J. Chory, Nat. Chem. Biol. 2013, 9, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSgt7o%3D&md5=b1d03b9b936ed95bbbe2bb841dc82228CAS | 23377040PubMed |
[23] X.-y. Yang, X.-y. Wu, Y.-p. An, H.-r. Tang, Chinese Journal of Magnetic Resonance 2014, 31, 81.
| 1:CAS:528:DC%2BC2cXptlGqtLY%3D&md5=76e819cd32b3dfc2573fc85217e6fe3aCAS |
[24] K. Hanai, A. Kuwae, S. Kawai, Y. Ono, J. Phys. Chem. 1989, 93, 6013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFKmtLk%3D&md5=ffdc86e874a2df00559b2ae19129db9fCAS |
[25] O. Sciacovelli, A. Dell’Atti, A. De Giglio, L. Cassidei, Z. Naturforsch., C: J. Biosci. 1976, 31, 5.
| 1:STN:280:DyaE283gtFGgsQ%3D%3D&md5=6b857c48b33526aed376fb9f74db2102CAS |
[26] K. Takahashi, H. Yokomizo, K. Ishiyama, M. Kitsuta, M. Ohashi, J. Inclusion Phenom. Macrocyclic Chem. 2006, 56, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSit77J&md5=621b0351620729c32a3097a0cb43e104CAS |