Water Structure Change-Induced Expansion and Collapse of Zwitterionic Polymers Surface-Grafted onto Carbon Black
Yiwen Pei A B , Jadranka Travas-Sejdic A and David E. Williams A CA MacDiarmid Institute for Advanced Materials and Nanotechnology, and Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.
B Current address: Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
C Corresponding author. Email: david.williams@auckland.ac.nz
Australian Journal of Chemistry 67(11) 1706-1709 https://doi.org/10.1071/CH14301
Submitted: 14 May 2014 Accepted: 12 July 2014 Published: 29 September 2014
Abstract
We demonstrate the expansion and collapse of surface-grafted zwitterionic polymer brushes in water caused by the addition of urea. We hypothesize that at low urea concentrations, this is an effect of an ion–dipole interaction between urea and the polymer, and at high urea concentrations, an effect of a change in water structure causing change in solvation of the brushes and hence a change in the dipole–dipole interaction, and that it is analogous to the effects of urea on protein stability.
References
[1] T. Liu, S. Jia, T. Kowalewski, K. Matyjaszewski, Langmuir 2003, 19, 6342.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Wgt7g%3D&md5=97f065f35755dd781dd15c3a38fe23deCAS |
[2] T. Liu, R. Casado-Portilla, J. Belmont, K. Matyjaszewski, J. Polym. Sci.,Part A: Polym. Chem. 2005, 43, 4695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsLjO&md5=57a26873cb5157952e9b5137e5878194CAS |
[3] T. Liu, S. Jia, T. Kowalewski, K. Matyjaszewski, Macromolecules 2006, 39, 548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVWmuw%3D%3D&md5=d8f6a24f500a9d807881f9846d3397acCAS |
[4] J. Cheng, L. Wang, J. Huo, H. Yu, Q. Yang, L. Deng, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12lsr4%3D&md5=d42a5c8c44039364a44077ead474cc2cCAS |
[5] B. Kong, J. S. Choi, S. Jeon, I. S. Choi, Biomaterials 2009, 30, 5514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCgur8%3D&md5=8047eb703361243531ded0fbf0bfeca8CAS | 19646752PubMed |
[6] G. Cheng, G. Li, H. Xue, S. Chen, J. D. Bryers, S. Jiang, Biomaterials 2009, 30, 5234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1CitLw%3D&md5=ba3382d3a402d73f65721fe60e679597CAS | 19573908PubMed |
[7] F. Dai, P. Wang, Y. Wang, L. Tang, J. Yang, W. Liu, H. Li, G. Wang, Polymer 2008, 49, 5322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOjtrnL&md5=a542abf82f9ea853f761e2b3dc62c173CAS |
[8] W. K. Cho, B. Kong, I. S. Choi, Langmuir 2007, 23, 5678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFyntb4%3D&md5=e3ec4ea41f6babd28e0e07f6b013f6aaCAS | 17432887PubMed |
[9] A. J. Keefe, S. Jiang, Nat. Chem. 2012, 4, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1eisbbE&md5=29f7d21af80b1fbea2a55a47169b4f56CAS |
[10] P. Pincus, Macromolecules 1991, 24, 2912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVygsb4%3D&md5=3dcb3e18aef5628239121ea955e66fd1CAS |
[11] F. Polzer, J. Heigl, C. Schneider, M. Ballauff, O. V. Borisov, Macromolecules 2011, 44, 1654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVWrtrc%3D&md5=dfa99100550bd401d6a71072b6c9a23cCAS |
[12] Z. Dong, J. Mao, M. Yang, D. Wang, S. Bo, X. Ji, Langmuir 2011, 27, 15282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVarsrrN&md5=e07589bbf43205f026a0eb6b2a26ab97CAS | 22124164PubMed |
[13] M. Kikuchi, Y. Terayama, T. Ishikawa, T. Hoshino, M. Kobayashi, H. Ogawa, H. Masunaga, J.-I. Koike, M. Horigome, K. Ishihara, A. Takahara, Polym. J. 2012, 44, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFelsA%3D%3D&md5=f65752e5bcb5fd5d9cab0f26059c5380CAS |
[14] L. G. Dias, F. H. Florenzano, W. F. Reed, M. S. Baptista, S. M. B. Souza, E. B. Alvarez, H. Chaimovich, I. M. Cuccovia, C. L. C. Amaral, C. R. Brasil, L. S. Romsted, M. J. Politi, Langmuir 2002, 18, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlChtr0%3D&md5=020234009fbcb9abe336fa5b0acab12dCAS |
[15] L. S. Romsted, J. Zhang, I. M. Cuccovia, M. J. Politi, H. Chaimovich, Langmuir 2003, 19, 9179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsl2nurw%3D&md5=e93730eff8644e5d87f20b0c656e2dabCAS |
[16] S. Kudaibergenov, W. Jaeger, A. Laschewsky, in Supramolecular Polymers Polymeric Betains Oligomers, Advances in Polymer Science (Eds A. Abe, K. Dusek, S. Kobayashi) 2006, Vol. 201, pp. 157–224 (Springer: Berlin).
[17] V. M. Monroy Soto, J. C. Galin, Polymer 1984, 25, 254.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. N. Schulz, D. G. Peiffer, P. K. Agarwal, J. Larabee, J. J. Kaladas, L. Soni, B. Handwerker, R. T. Garner, Polymer 1986, 27, 1734.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjtlyhsA%3D%3D&md5=ccaba52d5da660dd851d515b4b1cdd15CAS |
[19] K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ersrc%3D&md5=6b530f1a5809082196470ed2d23190d7CAS | 11749397PubMed |
[20] T. E. Patten, K. Matyjaszewski, Adv. Mater. 1998, 10, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Wltrw%3D&md5=6f6fa611e32fee8a47ef8037269a617eCAS |
[21] N. Cheng, O. Azzaroni, S. Moya, W. T. S. Huck, Macromol. Rapid Commun. 2006, 27, 1632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFars7%2FJ&md5=0599946d07e3bdc95a0dd7e905996c05CAS |
[22] R. Lalani, L. Liu, Polymer 2011, 52, 5344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtr%2FL&md5=fa7d7eaaee112adf889e6fa37567c976CAS |
[23] B. Shan, H. Yan, J. Shen, S. Lin, J. Appl. Polym. Sci. 2006, 101, 3697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVCis78%3D&md5=76e10d43934820bf618b2db93792ed02CAS |
[24] Y. Pei, J. Travas-Sedjic, D. E. Williams, Langmuir 2012, 28, 13241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kms73M&md5=9b7209dff77145d61df4577704ad960cCAS | 22924861PubMed |
[25] A. B. Lowe, C. L. McCormick, Chem. Rev. 2002, 102, 4177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSrur8%3D&md5=3c0fbfbc5cb6b3862b043b2ba86faa68CAS | 12428987PubMed |
[26] Y. L. A. Rezus, H. J. Bakker, Proc. Natl. Acad. Sci. USA 2006, 103, 18417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlalu7zF&md5=02dc33ef102bf129dbbf7e9e838861dbCAS |
[27] A. Idrissi, Spectrochim. Acta, Part A 2005, 61, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cnksFymug%3D%3D&md5=2b53d5b3d8a55ba003ed2ec5502cd609CAS |
[28] B. Palecz, J. Am. Chem. Soc. 2005, 127, 17768.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CkurvK&md5=f7876204440204bf3c975d26b7691294CAS | 16351105PubMed |
[29] J. L. England, G. Haran, Annu. Rev. Phys. Chem. 2011, 62, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWmtrY%3D&md5=01fff40d4a27330f092dbc73c940331bCAS | 21219136PubMed |
[30] Y. Pei, J. Travas-Sejdic, D. E. Williams, Langmuir 2012, 28, 8072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVGntLw%3D&md5=c5ea38f5368a2ddc8a9c23e6967d19fbCAS | 22551237PubMed |