Fluorovinyl Thioethers as Putative Steric and Electronic Thioester Enolate Mimetics: Chemoselective HF Addition to Acetylene Thioethers
Davide Bello A , Rodrigo A. Cormanich A and David O’Hagan A BA EaStChem School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, KY16 9ST, UK.
B Corresponding author. Email: do1@st-andrews.ac.uk
Australian Journal of Chemistry 68(1) 72-79 https://doi.org/10.1071/CH14298
Submitted: 14 May 2014 Accepted: 28 May 2014 Published: 21 August 2014
Abstract
Fluorovinyl thioethers are presented as a putative biomimetic surrogate for the enol/ate of a thioester. A method is explored for the preparation of fluorovinyl thioethers by treatment of acetylene thioethers with pyridinium (poly)-hydrogen fluoride. Titration with pyridine is important for the selectivity of the reaction. Without titration the corresponding gem-difluoroethyl thioethers are generated. With titration the hydrofluorination reaction can be stopped at an intermediate stage to recover the fluorovinyl thioether, which is a relatively stable functionality to purification and manipulation. Preliminary density functional theory calculations indicate that the fluorovinyl thioether motif shares a comparable steric and electronic profile to a thioester enol. A fluorovinyl thioether representing the terminus of the pantothenoyl chain of acetyl-CoA is prepared as a relevant biomimetic example.
References
[1] Fluorine in Medicinal Chemistry and Chemical Biology (Ed. I. Ojima) 2009 (Wiley: Hoboken, NJ).[2] P. Kirsch, Modern Fluoroorganic Chemistry 2004 (Wiley-VCH: Weinheim).
[3] D. Chevrie, T. Lequeux, J. P. Demoute, S. Pazenok, Tetrahedron Lett. 2003, 44, 8127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFGjs7Y%3D&md5=54ebd1fbe0d3b67e8e794a5a50480676CAS |
[4] J. B. Baudin, G. Hareau, S. A. Julia, O. Ruel, Tetrahedron Lett. 1991, 32, 1175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgsLk%3D&md5=b164c1ecf593f7ed8ed5ed3facdfadedCAS |
[5] H. Zhang, C. B. Zhou, Q. Y. Chen, J. C. Xiao, R. Hong, Org. Lett. 2011, 13, 560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1egu7bF&md5=74806893107e923298d336e2c53a5cb8CAS | 21192719PubMed |
[6] D. Andrei, S. F. Wnuk, J. Org. Chem. 2006, 71, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yrsLnI&md5=59986c7cf945e32ce2d78cbbf6305eb4CAS | 16388671PubMed |
[7] P. Albert, J. Cousseau, J. Chem. Soc., Chem. Commun. 1985, 961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmvVCitA%3D%3D&md5=4228dedff3a9ec8ca20d1ef99ef39b49CAS |
[8] A. Gorgues, D. Stéphan, J. Cousseau, J. Chem. Soc., Chem. Commun. 1989, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslOqurs%3D&md5=f376cc890b0e7b74e7d7f3638a2b8a2dCAS |
[9] G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerekes, J. A. Olah, J. Org. Chem. 1979, 44, 3872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvFahsLc%3D&md5=03f36a6c392de79b746d0f2d5fa63d69CAS |
[10] G. A. Olah, X.-Y. Li, Synlett 1990, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSrsb8%3D&md5=33860f59c6188c9cdef19d68935d4699CAS |
[11] J. A. Akana, K. X. Bhattacharyya, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2007, 129, 7736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVKlt7w%3D&md5=e67193de3e676a7b0711c3fcb022d02aCAS | 17547409PubMed |
[12] G. Compain, K. Jouvin, A. M. Mingot, G. Evano, J. Marrot, S. Thibaudeau, Chem. Commun. 2012, 48, 5196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ygurw%3D&md5=09ae785a8176356ab2e744813549750fCAS |
[13] B. C. Gorske, C. T. Mbofana, S. J. Miller, Org. Lett. 2009, 11, 4318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgu7rK&md5=a3deb568601b5440e3f4153f43f0af98CAS | 19711904PubMed |
[14] M. Schuler, F. Silva, C. Bobbio, A. Tessier, V. Gouverneur, Angew. Chem. Int. Ed. 2008, 47, 7927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs7bO&md5=7ca858d5f4ce563915d17fcc254fc8afCAS |
[15] T. de Haro, C. Nevado, Chem. Commun. 2011, 47, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtL7M&md5=6ccf9dcd72eb76ae590428d8082d90ebCAS |
[16] H. Peng, G. Liu, Org. Lett. 2011, 13, 772.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslyjtA%3D%3D&md5=a0c560b11fd6a554b2fce835608f6884CAS | 21250750PubMed |
[17] D. Bielefeldt, S. Böhm, A. Marhold, European Patent EP0485856 A1 1991.
[18] T. Hanamoto, K. Korekoda, K. Nakata, K. Handa, Y. Koga, M. Kondo, J. Fluor. Chem. 2002, 118, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2jtLo%3D&md5=da7df5995c53236dd9344a6a256164eeCAS |
[19] Fluorovinyl thioethers have also been prepared by thiodesulfonylation of 1-fluorovinyl sulfones; see: P. R. Sacasa, J. Zayas, S. F. Wnuk, Tetrahedron Lett. 2009, 50, 5424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cjs74%3D&md5=3c03c8fe804d5e1e04a175629b6c3314CAS | 20161068PubMed |
[20] W. W. Seidel, M. J. Meel, M. Schaffrath, T. Pape, Eur. J. Org. Chem. 2007, 3526.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlant7c%3D&md5=390135f21a113cc05119938976843bb9CAS |
[21] C. Eller, G. Kehr, C. G. Daniliuc, R. Fröhlich, G. Erker, Organometallics 2013, 32, 384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotl2gsg%3D%3D&md5=94fef9429f2016700e5b2fd9c644cc82CAS |
[22] A. V. Shchelkunov, L. A. Krichevskii, M. F. Shostakovskii, Dokl. Akad. Nauk SSSR 1983, 268.[Chem. Abstr. 1983, 99, 53053v].
[23] S. Couve-Bonnaire, D. Cahard, X. Pannecoucke, Org. Biomol. Chem. 2007, 5, 1151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVakurc%3D&md5=9b2a738da47e60237d090ad3e58402f5CAS | 17406709PubMed |
[24] E. T. Kool, H. O. Sintim, Chem. Comm. 2006, 3665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGktrs%3D&md5=1e12b43dc270bfe0d99dea34bc923c6bCAS | 17047807PubMed |
[25] L. Stryer, Biochemistry 1975 (W. H. Freeman and Co.: San Francisco, CA).
[26] M. W. van der Kamp, J. D. McGeagh, A. J. Mulholland, Angew. Chem. Int. Ed. 2011, 50, 10349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyls77F&md5=8df110725726733d892c2c7f588c8c36CAS |
[27] D. O’Hagan, H. S. Rzepa, J. Chem. Soc., Chem. Commun. 1994, 2029.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Zhang, Z. Yang, Y. Shen, L. Tong, Science 2003, 299, 2064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlCisL4%3D&md5=32635f5aa321af1454aef240d7c252eeCAS | 12663926PubMed |
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford, CT).