Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Micropatterned Arrays of ZnSe Nanospheres as Antireflection Coatings

S. Sasi Florence A , Priyanka Sachan B , Raju Kumar Gupta B D , Rita John C and Umadevi Mahalingam D
+ Author Affiliations
- Author Affiliations

A Department of Physics, Mother Teresa Women’s University, Kodaikanal-624101, Tamilnadu, India.

B Department of Chemical Engineering and DST Unit on Nanosciences, Indian Institute of Technology, Kanpur-208016, Uttar Pradesh, India.

C Department of Theoretical Physics, University of Madras, Chennai 600005, India.

D Corresponding authors. Email: guptark@iitk.ac.in; ums10@yahoo.com

Australian Journal of Chemistry 67(10) 1427-1433 https://doi.org/10.1071/CH14265
Submitted: 28 April 2014  Accepted: 19 June 2014   Published: 30 July 2014

Abstract

In this work, we demonstrate deposition of micro-arrays of ZnSe nanospheres on Si (100) substrate using simple thermal evaporation on a self-assembled sacrificial polystyrene (PS) mask. The results have been compared with the deposition on unpatterned gold catalyst- and SU-8 (negative photoresist)-coated Si substrates. The deposited ZnSe nanospheres properties were characterised by X-ray diffraction, atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman, photoluminescence, and UV-vis spectroscopies. The X-ray diffraction patterns of the films exhibited reflection corresponding to the cubic (111) phase and showed polycrystallinity with a cubic (zinc blende) structure. The SEM and AFM images indicated that the particles were well dispersed and spherical in shape. The micro-arrays of ZnSe nanospheres on a self-assembled sacrificial PS mask showed excellent structural, morphological, and optical properties and demonstrated its usage in photovoltaic devices as an improved superior antireflective coating. The reflectance of the micro-arrays of ZnSe nanospheres on a self-assembled sacrificial PS mask decreased to nearly half of that of the ZnSe nanospheres fabricated on Au- and SU-8-coated Si substrates in the range of 300–800 nm. Due to the well aligned and patterned surfaces, these noble textured ZnSe nanospheres may be suitable for low cost, large area photovoltaic devices and other antireflection applications.


References

[1]  Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, J. Kang, Nano-Micro Lett. 2012, 4, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eht7%2FI&md5=2a4da0167513e89a87cfedcd0eaaf096CAS |

[2]  M. A. Green, Silicon Solar Cells: Advanced Principles and Practice 1995 (Bridge: Sydney).

[3]  Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, Nano Lett. 2008, 8, 1501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslChs7g%3D&md5=4046cbc3c5c6a01cb81e9dc461b53712CAS | 18416581PubMed |

[4]  P. Lalanne, G. M. Morris, Nanotechnology 1997, 8, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1Ohsbc%3D&md5=5a13be80996d0e9e2ec7ccd1c5a7e775CAS |

[5]  Y. Kanamori, K. Hane, H. Sai, H. Yugami, Appl. Phys. Lett. 2001, 78, 142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Sqtw%3D%3D&md5=7de7d6517394e06699aa83871b196409CAS |

[6]  S. Koynov, M. S. Brandt, M. Stutzmann, Appl. Phys. Lett. 2006, 88, 203107.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C.-H. Sun, P. Jiang, B. Jiang, Appl. Phys. Lett. 2008, 92, 061112.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder, V. I. Klimov, J. Am. Chem. Soc. 2007, 129, 11708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Kntrs%3D&md5=7141969911a7d969501641781e85610eCAS | 17727285PubMed |

[9]  H. Zhong, Y. Zhou, Y. Yang, C. Yang, Y. Li, J. Phys. Chem. C 2007, 111, 6538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCiu7o%3D&md5=7b7311bdc77244997127995518f041bcCAS |

[10]  B. M. Kayes, H. A. Atwater, N. S. Lewis, J. Appl. Phys. 2005, 97, 114302.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Nduwimana, X.-Q. Wang, Nano Lett. 2009, 9, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyqsrrJ&md5=9126c62ade4ad728113ff75603fe9de4CAS | 19143504PubMed |

[12]  Y. Zhang, A. Wang, Mascarenhas, Nano Lett. 2007, 7, 1264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslKjurg%3D&md5=4c82a71325cb4da4128db6209a5f4798CAS | 17408302PubMed |

[13]  H. Yuan, Y. Wang, S.-M. Zhou, S. Lou, Chem. Eng. J. 2011, 175, 555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGktbjP&md5=18ff197e6a9bdfc9574b3cd8a7d5b619CAS |

[14]  W.-S. Wang, L. Zhen, C.-Y. Xu, L. Yang, W.-Z. Shao, J. Phys. Chem. C 2008, 112, 19390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGrs7nI&md5=728be1c8e4996d57e5bbc651054c7727CAS |

[15]  X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 2006, 128, 7222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFGgs7k%3D&md5=4a8346b1694a9c6279a7cb8f115bde54CAS | 16734476PubMed |

[16]  X. Wu, S. Zhou, S. Lou, Y. Wang, X. Shi, T. Gao, Y. Liu, Mater. Lett. 2012, 83, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOmt7fL&md5=5b0052fe07a83860d9f7515c9112bb73CAS |

[17]  S. S. Florence, R. John, D. L. Arockiasamy, M. Umadevi, Mater. Lett. 2012, 86, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yltrjL&md5=8d011cacc1e340a1ff3535649adc3b1aCAS |

[18]  A. B. Panda, S. Acharya, S. Efrima, Y. Golan, Langmuir 2007, 23, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WksLbK&md5=857905feb1167b420f49a17bc03f58b5CAS | 17209631PubMed |

[19]  M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Nature 1996, 383, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1Sjtr0%3D&md5=b6e0b314da0824899007d7a0b2564529CAS |

[20]  Chergui, M. Samah, M. Bouguerra, L. Guerbous, Mater. Sci. Eng., B 2006, 131, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsF2iur0%3D&md5=0c4b8d9440edb4332fb9fd0e5d1ac49cCAS |

[21]  W. Yao, S.-H. Yu, J. Jiang, L. Zhang, Chem. – Eur. J. 2006, 12, 2066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1KlsLw%3D&md5=6df93d6d5c5a21c7bd5f6e4edae8c673CAS | 16411256PubMed |

[22]  R. Debmalya, P. K. Basu, S. V. Eswaran, Resonance 2002, 7, 59.

[23]  C. S. Sharma, A. Verma, M. M. Kulkarni, D. K. Upadhyay, A. Sharma, ACS Appl. Mater. Interfaces 2010, 2, 2193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWisLk%3D&md5=60de4bc245709fec5c7a3f30bd431f10CAS | 20681561PubMed |

[24]  C. Cheng, M. Lei, L. Feng, T. L. Wong, K. M. Ho, K. K. Fung, M. M. T. Loy, D. Yu, N. Wang, ACS Nano 2009, 3, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCrt73E&md5=4deda05d834ec77276139ae51918f796CAS | 19206248PubMed |

[25]  W. Wang, J. Zhou, J. Song, N. Liu, Z. L. Xu, Wang, Nano Lett. 2006, 6, 2768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aitrzK&md5=04158ff2731891b1b41bac869c691fbdCAS |

[26]  X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVarsLo%3D&md5=4a7252593bf177048aab4858b583a13eCAS | 17412957PubMed |

[27]  H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, Nano Lett. 2004, 4, 1247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlGrsrg%3D&md5=ec242b9378bb9663f4d24ab50dd05625CAS |

[28]  C. M. Bruinink, M. Péter, P. A. Maury, M. de Boer, L. Kuipers, J. Huskens, D. N. Reinhoudt, Adv. Funct. Mater. 2006, 16, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVOqu7Y%3D&md5=36f835c02e8cd431e11b3500191294aaCAS |

[29]  A. Verma, A. Sharma, Adv. Mater. 2010, 22, 5306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVantw%3D%3D&md5=05a9ff302382915bcbe19fae33d84c21CAS | 20872412PubMed |

[30]  A. Verma, A. Sharma, Curr. Sci. 2013, 104, 1037.

[31]  A. Verma, A. Sharma, RSC Adv. 2012, 2, 2247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlt7s%3D&md5=cc376d5f56abaa34b9154ff8e89c3f05CAS |

[32]  A. Verma, A. Sharma, Soft Matter 2011, 7, 11119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhsb7F&md5=85d6fc3d39fd6d4a13704f9df0394e3aCAS |

[33]  A. Verma, A. Sharma, Macromolecules 2011, 44, 4928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFKqs7k%3D&md5=7481036e1a8286ea1cba04c049c32898CAS |

[34]  T.-H. Tsai, S. Thiagarajan, S.-M. Chen, Electroanalysis 2010, 22, 680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSjtLw%3D&md5=58c8d29c9ee7cd174913a06447d1ab23CAS |

[35]  H. P. Klug, L. E. J. Alexander, X-Ray Spectrom. 1975, 4, A18.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J. Du, L. Fu, Z. Liu, B. Han, Z. Li, Y. Liu, Z. Sun, D. Zhu, J. Phys. Chem. B 2005, 109, 12772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFOltrs%3D&md5=bf6aa5d7bb57aeec984d76bea077817eCAS | 16852583PubMed |

[37]  H. J. Watzke, J. H. Fendler, J. Phys. Chem. 1987, 91, 854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXntlCkuw%3D%3D&md5=84584475121eabcad8875a947117dd28CAS |

[38]  K. R. Murali, V. S. Vidhya, M. Jayachandran, Mater. Sci. Semicond. Process. 2007, 10, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSks7c%3D&md5=9137161cccddaab9af0ed0c3bc1701cdCAS |

[39]  S. Venkatachalam, R. Kumar, D. Mangalaraj, S. K. Narayandass, K. Kim, J. Yi, Solid-State Electron. 2004, 48, 2219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVCqtrk%3D&md5=fdb074c3490ca33c551ab7e5013bb2aeCAS |

[40]  H. Cao, G. Wang, J. H. Warner, A. A. R. Watt, Appl. Phys. Lett. 2008, 92, 013110.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  S. V. Pol, V. G. Pol, J. M. Calderon-Moreno, S. Cheylan, A. Gedanken, Langmuir 2008, 24, 10462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVGkurk%3D&md5=64d1af40595a61617c88a0d886d58b08CAS | 18686980PubMed |

[42]  L. Shi, Y. Xu, Q. Li, J. Phys. Chem. C 2009, 113, 1795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVeksw%3D%3D&md5=47fe9466e522f7d8e4f5800e852be499CAS |

[43]  X. Liu, J. Ma, P. Peng, W. Zheng, Langmuir 2010, 26, 9968.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKkt78%3D&md5=80147f1c724d94a53e085abf115b594fCAS | 20397658PubMed |

[44]  T. Yao, T. Takeda, R. Watanuki, Appl. Phys. Lett. 1986, 48, 1615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xktleisbo%3D&md5=0ad1bcf59573bf40d12bd6ada56c094cCAS |

[45]  Optical Society of America, Handbook of Optics, Vol. 2, 2nd edn 1994 (McGraw-Hill Professional: Columbus, OH).

[46]  A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, P. Yang, Nano Lett. 2010, 10, 334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGkur3E&md5=33cbb0dfc2f3663cd07968cee503aa97CAS | 20000808PubMed |

[47]  L. Hu, G. Chen, Nano Lett. 2007, 7, 3249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFehu7fK&md5=f3ffea43b42c006ca5411ced9a62670bCAS | 17927257PubMed |

[48]  J.-S. Cho, S. Baek, J. C. Lee, Sol. Energy Mater. Sol. Cells 2011, 95, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFalsr4%3D&md5=de15e36b76a1f7e16f3c756ee06b808fCAS |

[49]  J. Wei, K. Li, J. Chen, J. Zhang, R. Wu, J. Alloys Compd. 2012, 531, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Gnurs%3D&md5=c316e086c2bbf89911584f9396d91d36CAS |

[50]  B. Y. Geng, Q. B. Du, X. W. Liu, J. Z. Ma, X. W. Wei, L. D. Zhang, App. Phys. Lett. 2006, 89, 033115.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  U. Philipose, T. Xu, S. Yang, P. Sun, H. E. Ruda, Y. Q. Wang, K. L. Kavanagh, J. App. Phys. 2006, 100, 084316.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  L. Yang, W. J. Wang, B. Song, R. Wu, J. Li, Y. F. Sun, F. Shang, X. L. Chen, J. K. Jian, J. Cryst. Growth 2010, 312, 2852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCht7jI&md5=e00aa0d0c10316d0fee6a587a25fb358CAS |