Nanoporous Platinum Electrodes as Substrates for Metal Oxide-Supported Noble Metal Electrocatalytic Nanoparticles: Synergistic Effects During Electrooxidation of Ethanol
Iwona A. Rutkowska A C , Margaretta D. Koster B , Gary J. Blanchard B and Pawel J. Kulesza AA Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland.
B Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA.
C Corresponding author. Email: ilinek@chem.uw.edu.pl
Australian Journal of Chemistry 67(10) 1414-1421 https://doi.org/10.1071/CH14264
Submitted: 27 April 2014 Accepted: 2 June 2014 Published: 14 July 2014
Abstract
Electrocatalytic oxidation of ethanol in acid medium (0.5 mol dm–3 H2SO4) was significantly enhanced by not only supporting bimetallic PtRu nanoparticles on nanostructured metal oxides (TiO2 or WO3), but also by depositing such catalytic systems on planar nanoporous platinized electrode substrates. Incorporation of TiO2 or WO3 into the electrocatalytic interface was likely to improve proton mobility and to provide –OH groups capable of inducing the removal of poisoning species, such as CO, from the Pt sites in the bimetallic PtRu catalyst. Synergistic interactions between ruthenium and titania were also possible. Regularly porous nanostructured platinum substrate also permitted development of submicro ‘reactors’ where reactant molecules, electrolyte ions, and all active components (TiO2 or WO3, Pt substrate, PtRu catalytic sites) could co-exist and become easily accessible. While WO3 was able to undergo fast reversible redox transitions to non-stoichiometric oxides, efficient utilization of inert (non-electroactive) TiO2 required admixing with carbon nanotubes to ensure easy charge distribution and good conductivity at the electrocatalytic interface.
References
[1] C. Lamy, J.-M. Léger, S. Srinivasan, in Modern Aspects of Electrochemistry (Eds J. O. M. Bockris, B. E. Comway) 2000, Vol. 34, Ch. 3, pp. 53–117 (Plenum Press: New York, NY).[2] E. Pastor, T. Iwasita, Electrochim. Acta 1994, 39, 547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitVarsb0%3D&md5=abe4cd17122ec14dd0fb0dd8041aff71CAS |
[3] N. R. de Tacconi, R. O. Lezna, B. Beden, F. Hahn, C. Lamy, J. Electroanal. Chem. 1994, 379, 329.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. P. I. de Souza, S. L. Queiroz, K. Bergamaski, E. R. Gonzalez, F. C. Nart, J. Phys. Chem. B 2002, 106, 9825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wnu7k%3D&md5=293d7ac38dc07c16581d5c2a4b57d9c6CAS |
[5] H. Wang, Z. Jusys, R. J. Behm, J. Power Sources 2006, 154, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Wqurc%3D&md5=e0d68159a8549a4c1a8cd59c95188dc7CAS |
[6] V. Rao, C. Cremers, U. Stimming, L. Cao, S. Sun, S. Yan, G. Sun, Q. Xin, J. Electrochem. Soc. 2007, 154, B1138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KntbjM&md5=b743da2ebb044b02fc84e55802a0e2fdCAS |
[7] Q. Wang, G. Q. Sun, L. H. Jing, Q. Xin, S. G. Sun, Y. X. Jiang, S. P. Chen, Z. Jusys, R. J. Behm, Phys. Chem. Chem. Phys. 2007, 9, 2686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVKru7Y%3D&md5=6ae8118dc10632973c4b63ec4c28b73fCAS | 17627312PubMed |
[8] T. Vidakovic, M. Christov, K. Sundmacher, J. Electroanal. Chem. 2005, 580, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFGjt7g%3D&md5=10d21901deb0d1a6d1647a3a0b47961bCAS |
[9] K. Ruth, M. Vogt, R. Zuber, in Handbook of Fuel Cells—Fundamentals, Technology and Applications (Eds W. Vielstich, A. Lamm, H. A. Gasteiger) 2003, pp. 489–496 (John Wiley & Sons: New York, NY).
[10] S. Alayoglu, A. U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 2008, 7, 333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFOgur4%3D&md5=9428a845786fc20d488d468ccc0508aaCAS | 18345004PubMed |
[11] U. Koning, J. W. Schultze, in Interfacial Electrochemistry: Theory, Experiment and Applications (Ed. A.Wieckowski) 1999, pp. 649–672 (Marcel Dekker: New York, NY).
[12] S. Trassati, in Interfacial Electrochemistry: Theory, Experiment and Applications (Ed. A. Wieckowski) 1999, pp. 769–792 (Marcel Dekker: New York, NY).
[13] T. Maiyalagan, F. N. Khan, Catal. Commun. 2009, 10, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2lsA%3D%3D&md5=07c90516373d550d1375eab86066c23bCAS |
[14] S. Zoladek, I. A. Rutkowska, P. J. Kulesza, Appl. Surf. Sci. 2011, 257, 8205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt12ntL8%3D&md5=b694aec3ea15d7bb3aa3f27473fc84beCAS |
[15] S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, S. Aeiyach, I. A. Rutkowska, P. J. Kulesza, M. Jouini, Appl. Surf. Sci. 2011, 257, 8223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt12ntLo%3D&md5=24902585a35edf43046c8a0b50f2e1caCAS |
[16] D. Das, P. K. Sen, K. Das, J. Electroanal. Chem. 2007, 611, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlChtbnL&md5=559323c323c1c348f15526eeb1ddf3ccCAS |
[17] J. Shim, C.-R. Lee, J.-S. Lee, E. J. Cairns, J. Power Sources 2001, 102, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFOi&md5=7d608233a3cf21bab2398e5a991916b6CAS |
[18] P. J. Kulesza, I. S. Pieta, I. A. Rutkowska, A. Wadas, D. Marks, K. Klak, L. Stobinski, J. A. Cox, Electrochim. Acta 2013, 110, 474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehurzJ&md5=58cb1684e1e4c6854b9ada4f730e3233CAS | 24443590PubMed |
[19] P. K. Shen, C. Xu, Electrochem. Commun. 2006, 8, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGls7fF&md5=5614b9c2b6293f0cc665d62f4814eaa3CAS |
[20] R. S. Mane, W. J. Lee, H. M. Pathan, S.-H. Han, J. Phys. Chem. B 2005, 109, 24254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Omtr%2FM&md5=ba6962263ec6c943e87bccde2c580881CAS | 16375421PubMed |
[21] B. E. Hayden, D. V. Malevich, D. Pletcher, Electrochem. Commun. 2001, 3, 390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVWgsLk%3D&md5=f7134bce049b018fb48d1e9a18c3f53fCAS |
[22] K. D. Schierbaum, S. Fischer, P. Wincott, P. Hardman, V. Dhanak, G. Jones, G. Thornton, Surf. Sci. 1997, 391, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFSntrg%3D&md5=f366c717cd4d25a3eaf0b535cad21426CAS |
[23] J. H. Liu, C. B. Yu, Chem. J. Chinese U. 2003, 24, 2263.
| 1:CAS:528:DC%2BD2cXpslGh&md5=94451b6e333b1f90b72f5d0fecb31675CAS |
[24] S. Jayaraman, T. F. Jaramillo, S.-H. Baeck, E. W. McFarland, J. Phys. Chem. B 2005, 109, 22958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2ht77K&md5=2abce4245ca779417d6d78fb8d762445CAS | 16853991PubMed |
[25] P. J. Barczuk, K. Miecznikowski, P. J. Kulesza, J. Electroanal. Chem. 2007, 600, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1ekug%3D%3D&md5=698cc29ad13688df9030552b69cfd14aCAS |
[26] M. Chojak, M. Mascetti, R. Wlodarczyk, R. Marassi, K. Karnicka, K. Miecznikowski, P. J. Kulesza, J. Solid State Electrochem. 2004, 8, 854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVajtrs%3D&md5=e13bbe0429844fef9aa4ac405650a198CAS |
[27] B. Dembinska, P. J. Kulesza, Electrochim. Acta 2009, 54, 4682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGmsbc%3D&md5=e39f1a1e073ff898ad67b1e5ccb66e9eCAS |
[28] K. Miecznikowski, P. J. Kulesza, J. Power Sources 2011, 196, 2595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrtLrE&md5=4a4061248be137192889371124fe3957CAS |
[29] P. J. Barczuk, H. Tsuchiya, J. M. Macak, P. Schmuki, D. Szymanska, O. Makowski, K. Miecznikowski, P. J. Kulesza, Electrochem. Solid-State Lett. 2006, 9, E13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvF2gtLw%3D&md5=d77d790e21db52792cd08c2aa442b014CAS |
[30] J. Shim, C.-R. Lee, H.-K. Lee, J.-S. Lee, E. J. Cairns, J. Power Sources 2001, 102, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFOi&md5=7d608233a3cf21bab2398e5a991916b6CAS |
[31] H. Jin, J. Zhu, J. H. Y. Li, Y. Zhang, X. Huang, K. Ding, W. Chen, Theor. Chem. Acc. 2011, 130, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegtb7O&md5=23c4b55c968b58c5017123b953ec4ac3CAS |
[32] F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Phys. Chem. Chem. Phys. 2010, 12, 1182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos12jsg%3D%3D&md5=0241ef983ec0a3f70210429c079eaf66CAS | 20094684PubMed |
[33] P. J. Kulesza, L. R. Faulkner, J. Electroanal. Chem. 1988, 248, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltFyjtb0%3D&md5=6391cb928a4330b8902a269b00752c55CAS |
[34] P. J. Kulesza, L. R. Faulkner, J. Electrochem. Soc. 1989, 136, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVWnu74%3D&md5=a13493f24fe1cee804988793e8022c22CAS |
[35] J. Cichelli, I. Zharov, J. Am. Chem. Soc. 2006, 128, 8130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlKksLo%3D&md5=79c9ab9782484060e93179821a781d23CAS | 16787065PubMed |
[36] M. R. Newton, A. K. Bohaty, H. S. White, I. Zharov, J. Am. Chem. Soc. 2005, 127, 7268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVSltLk%3D&md5=11b7a519964ace6a05c45c2dc55e60c7CAS | 15898748PubMed |
[37] M. R. Newton, A. K. Bohaty, Y. H. Zhang, H. S. White, I. Zharov, Langmuir 2006, 22, 4429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCjur0%3D&md5=d9ddc1008421b16fa664860ecf75da8fCAS | 16618198PubMed |
[38] G. Y. Gao, D. J. Guo, H. L. Li, J. Power Sources 2006, 162, 1094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WmtrvE&md5=2472aff888e1bf643acb82d1c85bd870CAS |
[39] Z. Yin, H. J. Zheng, D. Ma, X. H. Bao, J. Phys. Chem. C 2009, 113, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisQ%3D%3D&md5=cb8a911099622ba1704c30378d160189CAS |
[40] M. M. Dimos, G. J. Blanchard, J. Phys. Chem. C 2010, 114, 6019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyku70%3D&md5=aa925580ffe5f88011104a0e8662393fCAS |
[41] M. M. Dimos, G. J. Blanchard, J. Phys. Chem. C 2011, 115, 11247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Glsrw%3D&md5=9e1baa3e39cfb2245a815f122b8e2413CAS |
[42] S. Reculusa, S. Ravaine, Chem. Mater. 2003, 15, 598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ek&md5=712e43a64545ccbd5740074da7c77e99CAS |
[43] W. Stober, A. Fink, E. J. Bohn, J. Colloid Interf. Sci. 1968, 26, 62.
| Crossref | GoogleScholarGoogle Scholar |
[44] R. Szamocki, S. Reculusa, S. Ravaine, P. N. Bartlett, A. Kuhn, R. Hempelmann, Angew. Chem. Int. Ed. 2006, 45, 1317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFyjsLk%3D&md5=1dbe66e06a87afee27ba8ba6ac5c3027CAS |
[45] Y. Liu, J. Chen, V. Misoska, G. F. Swiegers, G. G. Wallace, Mater. Lett. 2007, 61, 2887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslemsrs%3D&md5=0ceaaa78cb82f2e63579d1b4eff7d790CAS |
[46] S. M. Choi, M. H. Seo, H. J. Kim, E. J. Lim, W. B. Kim, Int. J. Hydrogen Energy 2010, 35, 6853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yhtbk%3D&md5=0cf90bc9dc6de8f6947195d02b8e9201CAS |
[47] M. Heinen, Z. Jusys, R. J. Bhem, J. Phys. Chem. C 2010, 114, 9850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFyktL4%3D&md5=7692da6f1e5158cadd09eb5ba1bf5063CAS |