Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Origins of Stabilization and Evidence for Charge Delocalization in the Bicyclo[3.2.1]octadienyl Anion and Related Species*

John M. Brown
+ Author Affiliations
- Author Affiliations

Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK. Email: john.brown@chem.ox.ac.uk

Australian Journal of Chemistry 67(9) 1296-1300 https://doi.org/10.1071/CH14244
Submitted: 16 April 2014  Accepted: 30 April 2014   Published: 3 July 2014

Abstract

Bridged bicyclic allylic anions with ethene and allyl units in proximity possess enhanced stability over analogues lacking the ethene bridge. Experimental observations have encouraged much computational effort, and for many years claims for homoaromatic behaviour in anions were disputed. More recently, and especially with the advent of quantum mechanics methods that assess magnetic susceptibility, homoaromaticity has become accepted. This paper provides a review of work on this topic to date, and additional density functional theory calculations with the purpose of providing a general overview. The presence of homoaromaticity in anions of this class is supported, and their stability is augmented by inductive and counterion effects.


References

[1]  F. Sondheimer, Acc. Chem. Res. 1972, 5, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1Kltrs%3D&md5=db4e1a3b1a2264c06bbd5c43acb28baaCAS |

[2]  (a) For example, see: H. Karabiyik, R. Sevincek, H. Karabiyik, J. Mol. Struct. 2014, 1064, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFylsrg%3D&md5=43588a9b8ab2e1eec9d6c69b198768e8CAS |
      (b) R. Islas, T. Heine, G. Merino, Acc. Chem. Res. 2012, 45, 215.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Saito, A. Osuka, Angew. Chem. Int. Ed. 2011, 50, 4342.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Alonso, B. Herradon, J. Comput. Chem. 2010, 31, 917.

[3]  (a) S. Winstein, J. Am. Chem. Soc. 1959, 81, 6524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXptFCmsg%3D%3D&md5=754a99758abc7f0d00d1305539ec7bddCAS |
      (b) S. Winstein, Quart. Rev. 1969, 23, 141.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) For the formal definition, see:http://goldbook.iupac.org/H02839.html

[4]  J. L. von Rosenberg, J. E. Mahler, R. Pettit, J. Am. Chem. Soc. 1962, 84, 2842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVyqs7o%3D&md5=011e316ef1f648fae5366ddbf4989bf2CAS |

[5]  S. Winstein, J. Sonnenberg, J. Am. Chem. Soc. 1961, 83, 3244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xms1Khuw%3D%3D&md5=e1ca6cdb836e4438bfcccc6bf183449cCAS |

[6]  (a) J. M. Brown, J. L. Occolowitz, Chem. Commun. 1965, 376.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) An earlier paper anticipated the stability of the anion: H. Prinzbach, W. Eberbach, G. v. Veh, Angew. Chem. 1965, 77, 454.

[7]  (a) J. M. Brown, Chem. Commun. 1967, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvVWlsLw%3D&md5=ba209154cbc199887d11b83128333f0bCAS |
      (b) S. Winstein, M. A. Ogliaruso, M. Sakai, J. M. Nicholson, J. Am. Chem. Soc. 1967, 89, 3656.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. W. Rosenthal, S. Winstein, Tetrahedron Lett. 1970, 11, 2683.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. M. Brown, E. N. Cain, M. C. McIvor, J. Chem. Soc. B 1971, 730.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) J. B. Grutzner, S. Winstein, J. Am. Chem. Soc. 1968, 90, 6562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXivVCltA%3D%3D&md5=59b15628a55760245abff79d00ea8d31CAS |
      (b) J. B. Grutzner, S. Winstein, J. Am. Chem. Soc. 1972, 94, 2200.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. J. Goldstein, S. Natowsky, J. Am. Chem. Soc. 1973, 95, 6451.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. V. Moncur, J. B. Grutzner, J. Am. Chem. Soc. 1973, 95, 6449.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. Jonsäll, P. Ahlberg, J. Chem. Soc., Perkin Trans. 2 1987, 461.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Blümel, F. H. Koehler, Chem. Ber. 1993, 126, 1283.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  W. N. Washburn, J. Org. Chem. 1983, 48, 4287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFCgsLY%3D&md5=1023bf5270f2f0a9a93e3f2374316832CAS |

[11]  (a) R. E. Lee, R. R. Squires, J. Am. Chem. Soc. 1986, 108, 5078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkslyhs7k%3D&md5=a325cda1416077066fa380990d401041CAS |
      (b) R. R. Squires, Acc. Chem. Res. 1992, 25, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  N. Hertkorn, F. H. Kohler, G. Muller, G. Reber, Angew. Chem. Int. Ed. 1986, 25, 468.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) M. Christl, H. Leininger, D. Bruckner, J. Am. Chem. Soc. 1983, 105, 4843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlOqsbg%3D&md5=ffacc0927f947c60be021ee27ebc5c01CAS |
      (b) F. H. Kohler, N. Hertkorn, Chem. Ber. 1983, 116, 3274.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) F. H. Köhler, N. Hertkorn, Z. Naturforsch. B 1983, 38, 407.
      (b) M. Christl, D. Bruckner, Chem. Ber. 1986, 119, 2025.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Hertkorn, F. H. Kohler, J. Organomet. Chem. 1988, 355, 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Christl, H. Muller, Chem. Ber. 1993, 126, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) G. B. Trimitsis, A. Tuncay, J. Am. Chem. Soc. 1975, 97, 7193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktVyr&md5=894db35ec455175ac148329af0af54d1CAS |
      (b) G. Trimitsis, F. T. Lin, R. Eaton, S. Jones, M. Trimitsis, S. Lane, Chem. Commun. 1987, 1704.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. B. Grutzner, W. L. Jorgensen, J. Am. Chem. Soc. 1981, 103, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVajs7k%3D&md5=49e79de8f71ca54fbebc2f445b129549CAS |

[17]  E. Kaufmann, H. Mayr, J. Chandrasekhar, P. V. Schleyer, J. Am. Chem. Soc. 1981, 103, 1375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFKisrg%3D&md5=434ccc503c7fdf199897519a2923e8f5CAS |

[18]  P. von Ragué Schleyer, E. Kaufmann, A. J. Kos, H. Mayr, J. Chandrasekhar, Chem. Commun. 1986, 1583.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. Lindh, B. O. Roos, G. Jonsall, P. Ahlberg, J. Am. Chem. Soc. 1986, 108, 6554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlslWnu78%3D&md5=cc920dd0b94e70cf9d9871618cae3f13CAS |

[20]  J. M. Brown, R. J. Elliott, W. G. Richards, J. Chem. Soc., Perkin Trans. 2 1982, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xkt1arurY%3D&md5=9131ea6fb2afb0095d8011f208c6fa0aCAS |

[21]     (a) R. F. Childs, D. Cremer, G. Elia, in Chemistry of the Cyclopropyl Group (Ed. Z. Rappoport) 1995, Vol. 2, pp. 411–468 (Wiley, Ltd: Chichester).
         (b) D. Cremer, R. F. Childs, E. Kraka, in Chemistry of the Cyclopropyl Group (Ed. Z. Rappoport) 1995, Vol. 2, pp. 339–410 (Wiley, Ltd: Chichester) state ‘we are troubled by the absence of high-level calculations of the structure of 133 (4 in the present manuscript) and its magnetic properties’.

[22]  H. Jiao, P. R. Schleyer, AIP Conf. Proc. 1995, 330, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFKit7c%3D&md5=3682ffb62cde4de37abf536a188b0e46CAS |

[23]  (a) For recent overviews of DFT functionals, including B3LYP, see: T. Schwabe, S. Grimme, Acc. Chem. Res. 2008, 41, 569.
         | 1:CAS:528:DC%2BD1cXjtVCqtrc%3D&md5=baef263f2fae39a6b0e1d2b987989d5cCAS | 18324790PubMed |
      (b) S. F. Sousa, P. A. Fernandes, M. J. Ramos, J. Phys. Chem. A 2007, 111, 10439.

[24]  (a) R. V. Williams, Chem. Rev. 2001, 101, 1185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFaqtbg%3D&md5=54ae5d0f0bef153d9cd0be5066d3bfb4CAS | 11710217PubMed |
      (b) N. H. Werstiuk, J. G. Ma, Can. J. Chem. 1999, 77, 752.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) P. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFCis7Y%3D&md5=3cced0131ab1cc41bea821a26d463db3CAS |
      (b) P. von Ragué Schleyer, M. Manoharan, Z.-X. Wang, B. Kiran, H. Jiao, R. Puchta, N. J. R. van Eikema Hommes, Org. Lett. 2001, 3, 2465.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. R. Schleyer, Chem. Rev. 2005, 105, 3842.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. Kleinpeter, A. Koch, Tetrahedron 2009, 65, 5350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFaru7c%3D&md5=6f8b0f21c838f8ec5a718f53833945aaCAS |

[27]  J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksbfO&md5=b65571635ddde35df4e28a9d8c46aa76CAS | 18989472PubMed |

[28]  (a) The default continuum solvation model in Gaussian 09 is SCRF; see: J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | 1:CAS:528:DC%2BD2MXmsVynurc%3D&md5=56defe400410427bc5df2a020f39d1d6CAS | 16092826PubMed |
      (b) J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027.

[29]  Computation was conducted with the Gaussian 09 program suite: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision D.01 2011 (Gaussian, Inc.: Wallingford, CT).

[30]  (a) G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, R. V. Tsyshevsky, Comput. Theor. Chem. 2013, 1011, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Sis74%3D&md5=2960f38e93873308299bac0e88c0a349CAS |
      (b) A. Yadav, P. C. Mishra, Mol. Phys. 2014, 112, 88.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. Christl, R. Less, H. Muller, Chem. Commun. 1994, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsl2jsro%3D&md5=d7f40a2797e5df6f781ffc51b5bceac1CAS |