Microwave Flash Pyrolysis: C9H8 Interconversions and Dimerisations
Aida Ajaz A , Alicia C. Voukides A , Katharine J. Cahill A , Rajesh Thamatam A , Sarah L. Skraba-Joiner A and Richard P. Johnson A BA Department of Chemistry, University of New Hampshire, Durham, NH 03857, USA.
B Corresponding author. Email: richard.johnson@unh.edu
Australian Journal of Chemistry 67(9) 1301-1308 https://doi.org/10.1071/CH14238
Submitted: 13 April 2014 Accepted: 29 April 2014 Published: 12 June 2014
Abstract
The pyrolysis of 2-ethynyltoluene, indene, fluorene, and related compounds has been studied by sealed tube microwave flash pyrolysis (MFP), in concert with modelling of putative mechanistic pathways by density functional theory (DFT) computations. In the MFP technique, samples are admixed with graphite and subjected to intense microwave power (150–300 W) in a quartz reaction tube under a nitrogen atmosphere. The MFP reaction of 2-ethynyltoluene gave mostly indene, the product of a Roger Brown rearrangement (1,2-H shift to a vinylidene) followed by insertion. An additional product was chrysene, the likely result of hydrogen atom loss from indene followed by dimerisation. The intermediacy of dimeric bi-indene structures was supported by pyrolysis of bi-indene and by computational models. Benzo[a]anthracene and benzo[c]phenanthrene are minor products in these reactions. These are shown to arise from pyrolysis of chrysene under the same MFP conditions. MFP reaction of fluorene gave primarily bi-fluorene, bifluorenylidene, and dibenzochrysene, the latter derived from a known Stone–Wales rearrangement.
References
[1] F. Wöhler, Poggendorff’s Ann. Phys. 1828, 87, 253.| Crossref | GoogleScholarGoogle Scholar |
[2] C. D. Hurd, The Pyrolysis of Carbon Compounds, ACS Monograph Series, No. 50 1929 (The Chemical Catalog Company: New York, NY).
[3] G. M. Badger, Proc. R. Aust. Chem. Inst. 1973, 40, 273.
| 1:CAS:528:DyaE2cXhsVSruw%3D%3D&md5=6ea49b8ed3c8c54d0a64548f58a2dee6CAS |
[4] G. M. Badger, J. K. Donnelly, T. M. Spotswood, Aust. J. Chem. 1966, 19, 1023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlOqtb4%3D&md5=ec4335733c0cc487c2ce52de6daa82d1CAS |
[5] G. M. Badger, J. K. Donnelly, T. M. Spotswood, Aust. J. Chem. 1964, 17, 1147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXit1CnsA%3D%3D&md5=a05afb8a1d3297f052fae4d1db655a03CAS |
[6] G. M. Badger, J. K. Donnelly, T. M. Spotswood, Aust. J. Chem. 1964, 17, 1138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXit1Cnsw%3D%3D&md5=11b21907f3eae8cfb38efeac3fe0799fCAS |
[7] G. M. Badger, J. Novotny, J. Chem. Soc. 1961, 3400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XisV2nug%3D%3D&md5=ff1f2308ca68bd04c90c922c01c97aeeCAS |
[8] G. M. Badger, J. Novotny, J. Chem. Soc. 1961, 3403.
| 1:CAS:528:DyaF38XisV2nuw%3D%3D&md5=74cb20b6085b067aae6d06b3b6f73c35CAS |
[9] G. M. Badger, G. E. Lewis, I. M. Napier, J. Chem. Soc. 1960, 2825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXisFOg&md5=69dcca4e23b9659f97704f55624d5f36CAS |
[10] G. M. Badger, R. W. L. Kimber, J. Chem. Soc. 1960, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXltVehtA%3D%3D&md5=f8f39539bb37fe53f4b4a55e3fbd43eaCAS |
[11] G. M. Badger, R. W. L. Kimber, J. Chem. Soc. 1960, 2746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXht1yksbk%3D&md5=1ca671bc94520860df829677d6e4493bCAS |
[12] G. M. Badger, R. G. Buttery, R. W. L. Kimber, G. E. Lewis, A. G. Moritz, I. M. Napier, J. Chem. Soc. 1958, 2449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXhtFemurs%3D&md5=2b95e740faa1cdc7518cff20d99d7f63CAS |
[13] G. M. Badger, R. G. Buttery, J. Chem. Soc. 1958, 2458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXhtFemurY%3D&md5=fd6135cdaf0bd9e2386dba4de60cc195CAS |
[14] L. T. Scott, Polycycl. Aromat. Comp. 2010, 30, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGku7nN&md5=d2a06c84ecb1d0e76c929b483acc5d98CAS |
[15] V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOmtLrJ&md5=b0901e0a3ae748f90dee9250daa1222fCAS | 17165678PubMed |
[16] R. F. C. Brown, Aust. J. Chem. 2010, 63, 1002.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2hsb4%3D&md5=8d23492ac02241525a6100a226c7ba4eCAS |
[17] H. McNab, Aldrichim Acta 2004, 37, 19.
| 1:CAS:528:DC%2BD2cXksVSntbo%3D&md5=70b71b7774c427755fed124334e699d7CAS |
[18] R. F. C. Brown, Eur. J. Org. Chem. 1999, 3211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslSgsbc%3D&md5=540dde6857dcf4f0a9a413df3db7e48cCAS |
[19] R. F. C. Brown, Organic Chemistry, Vol. 41: Pyrolytic Methods in Organic Chemistry: Application of Flow and Flash Vacuum Pyrolytic Techniques 1980 (Academic Press, Inc.: New York, NY).
[20] F. W. Eastwood, in Gas Phase Reactions in Organic Synthesis (Ed. Y. Vallee) 1997, pp. 1–105 (Gordon & Breach: Amsterdam).
[21] R. F. C. Brown, Chemobiography: Chemistry in Australia 2001 (Royal Australian Chemical Institute: Melbourne).
[22] R. F. C. Brown, R. K. Solly, Aust. J. Chem. 1966, 19, 1045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlOqtb8%3D&md5=7d9f43c37fa38145ed0361b1a7757cbbCAS |
[23] R. F. C. Brown, Pure Appl. Chem. 1990, 62, 1981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFahtg%3D%3D&md5=009ce3e3f0f5e0b37a27b25f077b2532CAS |
[24] C. Wentrup, Aust. J. Chem. 2014, 67, 1150.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. A. Miller, M. J. Pilling, J. Troe, Proc. Combust. Inst. 2005, 30, 43.
| Crossref | GoogleScholarGoogle Scholar |
[26] R. E. Winans, N. A. Tomczyk, J. E. Hunt, M. S. Solum, R. J. Pugmire, Y. J. Jiang, T. H. Fletcher, Energy Fuels 2007, 21, 2584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1WjtLs%3D&md5=527144e36d7373747594d9971c853d5aCAS |
[27] C. S. McEnally, L. D. Pfefferle, B. Atakan, K. Kohse-Hoeinghaus, Pror. Energy Combust. Sci. 2006, 32, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCktLo%3D&md5=479bfbcf8096720bed4271b5cf7a93a5CAS |
[28] M. Frenklach, Phys. Chem. Chem. Phys. 2002, 4, 2028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslOnsLw%3D&md5=6d31b1c09e0d4694cdd4e97d2462c959CAS |
[29] H. Richter, J. B. Howard, Pror. Energy Combust. Sci. 2000, 26, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvV2jt78%3D&md5=63e7f558e7fbbbd7f25a13ca720195d9CAS |
[30] V. V. Kislov, A. I. Sadovnikov, A. M. Mebel, J. Phys. Chem. A 2013, 117, 4794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFCksLc%3D&md5=d2e554aad1e7edc37745d162bfdc2cfcCAS | 23672431PubMed |
[31] H. Y. Cho, A. Ajaz, D. Himali, P. A. Waske, R. P. Johnson, J. Org. Chem. 2009, 74, 4137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2htLw%3D&md5=69b26a1fec94a554d56bba2da5d2a0d7CAS | 19432412PubMed |
[32] T. Besson, V. Thiery, J. Dubac, in Microwaves in Organic Synthesis, 2nd edn (Ed. A. Loupy) 2006, Ch. 9, pp. 416–455 (Wiley-VCH: Weinheim).
[33] A. Laporterie, J. Marquie, J. Dubac, in Microwaves in Organic Synthesis (Ed. A. Loupy) 2002, Ch. 7, pp. 219–252 (Wiley-VCH: Weinheim).
[34] D. Lecoq, B. A. Chalmers, R. N. Veedu, D. Kvaskoff, P. V. Bernhardt, C. Wentrup, Aust. J. Chem. 2009, 62, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFentrfP&md5=3e75528daf6047c6157c9c84b058b0c4CAS |
[35] D. Cantillo, H. Sheibani, C. O. Kappe, J. Org. Chem. 2012, 77, 2463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVeqs7k%3D&md5=117eeaa7f5b505a7565c5cfc31c8460aCAS | 22321044PubMed |
[36] R. F. C. Brown, F. W. Eastwood, K. J. Harrington, G. L. McMullen, Aust. J. Chem. 1974, 27, 2393.
| 1:CAS:528:DyaE2MXhs1Ciug%3D%3D&md5=816b217e3506f955a953f56fc1ca1f06CAS |
[37] J. Mabry, R. P. Johnson, J. Am. Chem. Soc. 2002, 124, 6497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFCmtrw%3D&md5=63a94aecc682121f0c6c1c315014502eCAS | 12033881PubMed |
[38] H. Lee, J. H. Baraban, R. W. Field, J. F. Stanton, J. Phys. Chem. A 2013, 117, 11679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFGqt7k%3D&md5=c9385b3309b6825c66707e98009da65eCAS | 23621573PubMed |
[39] S. Joseph, A. J. C. Varandas, J. Phys. Chem. A 2010, 114, 13277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyiur%2FF&md5=ba3602aef0b0dd680ad682296963027bCAS | 21105639PubMed |
[40] S. Zou, J. M. Bowman, Chem. Phys. Lett. 2003, 368, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVajsbg%3D&md5=39dfa3034542eb7e2ed60b62fd6ab010CAS |
[41] M. M. Gallo, T. P. Hamilton, H. F. Schaefer, J. Am. Chem. Soc. 1990, 112, 8714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSmtrg%3D&md5=39869e19f84024df81dff646c8c73504CAS |
[42] I. D. Mackie, R. P. Johnson, J. Org. Chem. 2009, 74, 499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmtrvO&md5=7d81837faa4541db469a71ea784ebb5cCAS | 19067566PubMed |
[43] J. J. Gajewski, Organic Chemistry, Vol. 44: Hydrocarbon Thermal Isomerizations 1981 (Academic Press: New York, NY).
[44] L. L. Miller, R. F. Boyer, J. Am. Chem. Soc. 1971, 93, 650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXnsFymuw%3D%3D&md5=7ce0d0a124922f14a8d3046617c5aa04CAS |
[45] A. Spilker, Ber. Dtsch. Chem. Ges. 1893, 26, 1538.
| Crossref | GoogleScholarGoogle Scholar |
[46] G. M. Badger, S. D. Jolad, T. M. Spotswood, Aust. J. Chem. 1966, 19, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlKjtw%3D%3D&md5=906b9732893ec8b4d53985dff9f2df8cCAS |
[47] J. A. Mulholland, M. Lu, D.-H. Kim, Proc. Combust. Inst. 2000, 28, 2593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Gnsro%3D&md5=6d4c0b54712f456d99818e8d36f38d73CAS |
[48] J. Filley, J. T. McKinnon, Combust. Flame 2001, 124, 721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Witro%3D&md5=d41083a584fd6d972f0c36301a614f86CAS |
[49] D. H. Kim, J. A. Mulholland, D. Wang, A. Violi, J. Phys. Chem. A 2010, 114, 12411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyksL7K&md5=2827c28e5f98d789424c126f1aa1fa80CAS |
[50] F. Zhang, R. I. Kaiser, V. V. Kislov, A. M. Mebel, A. Golan, M. Ahmed, J. Phys. Chem. Lett. 2011, 2, 1731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGmsr4%3D&md5=987fc9f312247819a65b5ca26b825afcCAS |
[51] D. S. N. Parker, F. Zhang, R. I. Kaiser, V. V. Kislov, A. M. Mebel, Chem. Asian J. 2011, 6, 3035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Crt7zI&md5=762f713deea04a283747a400900d8db9CAS |
[52] G. da Silva, J. W. Bozzelli, J. Phys. Chem. A 2009, 113, 8971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFClsL4%3D&md5=d52106a9f267ed356ee2f75b12dc8060CAS | 19603772PubMed |
[53] V. V. Kislov, A. M. Mebel, J. Phys. Chem. A 2008, 112, 700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Omtg%3D%3D&md5=a52c0d0d016daf6a04136ee8d92bfd73CAS | 18181589PubMed |
[54] M. Lu, J. A. Mulholland, Chemosphere 2001, 42, 625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFSntbY%3D&md5=72c887189d9784e2297871ed122b6224CAS | 11219688PubMed |
[55] P. Nicolet, J. Y. Sanchez, A. Benaboura, M. J. M. Abadie, Synthesis 1987, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlequ7Y%3D&md5=a818a53bcce90d6e02347c5c1bcfbdecCAS |
[56] R. W. Alder, S. P. East, J. N. Harvey, M. T. Oakley, J. Am. Chem. Soc. 2003, 125, 5375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVClsbo%3D&md5=cd6fce1d5d7a5b4fdd2e9051d8cb38caCAS | 12720451PubMed |
[57] S. Stankovic, S. Markovic, I. Gutman, S. Sretenovic, J. Mol. Model. 2010, 16, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKrtbjM&md5=c4687f980544a4bb804fa11375dcf56dCAS | 20683790PubMed |
[58] M. R. Nimlos, J. Filley, J. T. McKinnon, J. Phys. Chem. A 2005, 109, 9896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKmtLfN&md5=aea769aac3cdb79df7238737ddf5a788CAS | 16833306PubMed |
[59] A. Necula, L. T. Scott, J. Anal. Appl. Pyrolysis 2000, 54, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFyju7g%3D&md5=b00d9907f89171bdfb1e873caa7e8d81CAS |
[60] J. H. Horner, N. Tanaka, M. Newcomb, J. Am. Chem. Soc. 1998, 120, 10379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtF2gsb8%3D&md5=47ef707e129af70b0469f539c8f6314bCAS |
[61] D. Wang, A. Violi, D. H. Kim, J. A. Mullholland, J. Phys. Chem. A 2006, 110, 4719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFymsrw%3D&md5=9854eb51512eb70ed288a0d2ceefe6c1CAS | 16599439PubMed |
[62] K. Dziewonski, J. Suszko, Ber. Dtsch. Chem. Ges. 1925, 58, 2544.
| Crossref | GoogleScholarGoogle Scholar |
[63] A. Eckert, J. Prakt. Chem. 1929, 121, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1MXivFartQ%3D%3D&md5=596661bb3c35ec0205ad4d5f337c0a71CAS |
[64] K. F. Lang, H. Buffleb, J. Kalowy, Chem. Ber. 1961, 94, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXlvFChug%3D%3D&md5=e313e51312c8d31c95045a91651d0bcbCAS |
[65] N. Assadi, S. Pogodin, I. Agranat, Eur. J. Org. Chem. 2011, 2011, 6773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sru7vL&md5=7fbd43466bb18ec3ecd24de0bc343978CAS |
[66] J. J. Eisch, P. O. Fregene, Eur. J. Org. Chem. 2008, 2008, 4482.
| Crossref | GoogleScholarGoogle Scholar |
[67] H. A. Wegner, L. T. Scott, A. de Meijere, J. Org. Chem. 2003, 68, 883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlWg&md5=fbc89a397968f7bd606e3a53421cc301CAS | 12558411PubMed |
[68] V. Sachweh, H. Langhals, Chem. Ber. 1990, 123, 1981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSqsbk%3D&md5=940ead9bce5c45ac9a945771360e42d6CAS |
[69] S. Pogodin, P. U. Biedermann, I. Agranat, J. Org. Chem. 1997, 62, 2285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlWjt7k%3D&md5=085788e3157d0cc3916740a943a4e564CAS | 11671545PubMed |
[70] H. Someya, H. Yorimitsu, K. Oshima, Tetrahedron 2010, 66, 5993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWjsL4%3D&md5=08ad38fd8525a2afc2cbc49bd1aaea57CAS |
[71] T. S. Navale, K. Thakur, R. Rathore, Org. Lett. 2011, 13, 1634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1art7s%3D&md5=6ee33d0534b19b375f34432b630b690fCAS | 21361296PubMed |
[72] R. Shenhar, R. Beust, S. Hagen, H. E. Bronstein, I. Willner, L. T. Scott, M. Rabinovitz, J. Chem. Soc., Perkin Trans. 2 2002, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivV2nur8%3D&md5=628dec00ed05d3877546b689af47f12dCAS |
[73] R. W. Alder, J. N. Harvey, J. Am. Chem. Soc. 2004, 126, 2490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVakur4%3D&md5=22b3079037886ad9ee0a573d3ecdcc6eCAS | 14982458PubMed |
[74] N. S. Mills, J. L. Malandra, E. E. Burns, A. Green, K. E. Unruh, D. E. Kadlecek, J. A. Lowery, J. Org. Chem. 1997, 62, 9318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1CrsQ%3D%3D&md5=ae798d556b2632ea378d1a3849ec7ad5CAS |