Magnetic Exchange Effects in {CrIII2DyIII2} Single Molecule Magnets Containing Alcoholamine Ligands
Stuart K. Langley A , Daniel P. Wielechowski A , Boujemaa Moubaraki A , Brendan F. Abrahams B and Keith S. Murray A CA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
C Corresponding author. Email: keith.murray@monash.edu
Australian Journal of Chemistry 67(11) 1581-1587 https://doi.org/10.1071/CH14207
Submitted: 30 March 2014 Accepted: 12 May 2014 Published: 15 July 2014
Abstract
The synthesis and magnetic characterisation of four new heterometallic {CrIII2DyIII2} complexes 2–5 are described. The present work follows on from a recently isolated complex [CrIII2DyIII2(OMe)2(O2CPh)4(mdea)2(NO3)2] (1) (mdeaH2 = N-methyldiethanolamine), which displayed impressive single molecule magnet (SMM) properties, notably highly coercive magnetic hysteresis loops below 3.5 K. Compounds 1–5 all display a planar butterfly type metallic core arrangement, with the DyIII ions occupying the central body positions and the CrIII ion the outer wing positions. The core is stabilized by the amine–diolate, and carboxylate bridging ligands. Variation of the amine–diolate ligand resulted in several structural analogues which maintain the same metallic core, but differ from the parent 1 in the outer ligand coordination environment. Magnetic studies reveal complexes 2–5 also display SMM behaviour, unambiguously confirmed via low temperature magnetic hysteresis loops, each displaying wide coercive fields, a rare occurrence for lanthanoid-based SMMs.
References
[1] R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1WisrY%3D&md5=56f3db8c281f976fca8e23fca72be0dfCAS |
[2] (a) L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVSrsrk%3D&md5=492cde5abb47a6fe2a79d7e7375cbba8CAS | 18297126PubMed |
(b) A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, R. E. P. Winpenny, Phys. Rev. Lett. 2007, 98, 057201.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Luis, A. Repolles, M. J. Martınez-Perez, D. Aguila, O. Roubeau, D. Zueco, P. J. Alonso, M. Evangelisti, A. Camon, J. Sese, L. A. Barrios, G. Aromi, Phys. Rev. Lett. 2011, 107, 117203.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGjtbjF&md5=4101bde623f593dbeb5e8396b3b2399cCAS | 21838285PubMed |
(b) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538.
| Crossref | GoogleScholarGoogle Scholar |
[4] S. Demir, J. M. Zadrozny, M. Nippe, J. R. Long, J. Am. Chem. Soc. 2012, 134, 18546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2kt7fE&md5=539378d2f084b3208c11aac2c2162e09CAS | 23110653PubMed |
[5] D. Aravena, E. Ruiz, Inorg. Chem. 2013, 52, 13770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyms7jJ&md5=bb8f01264276ec1eece313ef1a7eb9a0CAS | 24237385PubMed |
[6] (a) D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKlsLg%3D&md5=fa49afbd486ceb68bd60e819ec662982CAS | 23550940PubMed |
(b) P. Zhang, Y.-N. Guo, J. Tang, Coord. Chem. Rev. 2013, 257, 1728.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) C. R. Ganivet, B. Ballesteros, G. de la Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. – Eur. J. 2013, 19, 1457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmsLnE&md5=22223430cdc3dee5c5a74abb672bcd2aCAS | 23197446PubMed |
(b) R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 6530.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 2003, 42, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWqsLw%3D&md5=72f1d79bb876f14a267ea0c229c0cb19CAS |
[9] S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru, K. S. Murray, Angew. Chem. Int. Ed. 2013, 52, 12014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ntbrO&md5=36f93be26ac09da3a2720c35e4e79a15CAS |
[10] (a) S. K. Langley, N. F. Chilton, L. Ungur, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Inorg. Chem. 2012, 51, 11873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWksLvN&md5=7c414cdef6c22f7e0dadcef742a32ef7CAS | 23072350PubMed |
(b) S. K. Langley, N. F. Chilton, L. Ungur, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Inorg. Chem. 2014, 53, 4303.
(c) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Inorg. Chem. 2013, 52, 7183.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Chem. Commun. 2013, 49, 6965.
| Crossref | GoogleScholarGoogle Scholar |
[11] CrysAlisPro Version 1.171.33.34d (release 27-02-2009 CrysAlis171.NET) 2009 (Oxford Diffraction Ltd (now Agilent Technologies, XRD Products): Oxford).
[12] CrysAlisPro Version 1.171.33.34d (release 27-02-2009 CrysAlis171.NET) 2009 (Oxford Diffraction Ltd (now Agilent Technologies, XRD Products): Oxford). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
[13] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS | 18156677PubMed |
[14] (a) For example: P.-E. Car, M. Perfetti, M. Mannini, A. Favre, A. Caneschi, R. Sessoli, Chem. Commun. 2011, 47, 3751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Snt7g%3D&md5=aafb6e5d4261ae44068af64761e0931bCAS |
(b) N. F. Chilton, S. K. Langley, B. Moubaraki, A. Soncini, K. S. Murray, Chem. Sci. 2013, 4, 1719.
| Crossref | GoogleScholarGoogle Scholar |
(c) P.-H. Lin, T. J. Burchell, R. Clerac, M. Murugesu, Angew. Chem. Int. Ed. 2008, 47, 8848.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. A. Sulway, R. A. Layfield, F. Tuna, W. Wernsdorfer, R. E. P. Winpenny, Chem. Commun. 2012, 48, 1508.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. S. Cole, R. H. J. Cole, Chem. Phys. 1941, 9, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXit1Sktw%3D%3D&md5=d8072e225a9f4b9ce0a2c8ad21a024ecCAS |
[16] P. Zhang, L. Zhang, C. Wang, S. Xue, S.-Y. Lin, J. Tang, J. Am. Chem. Soc. 2014, 136, 4484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2msr8%3D&md5=a5599c7f4946e9fb25f8991ee51c690cCAS | 24625001PubMed |
[17] (a) P.-H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, M. Murugesu, Angew. Chem. Int. Ed. 2009, 48, 9489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFars7bJ&md5=9b9cd9515663cecec259e912b48b41e2CAS |
(b) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. J. Le Roy, I. Korobkov, M. Murugesu, Chem. Commun. 2014, 50, 1602.
| Crossref | GoogleScholarGoogle Scholar |