An Unexpected Coupling Reaction of 8-Quinolinolate at Elevated Temperature
Glen B. Deacon A , Craig M. Forsyth A , Olga Gazukin A , Peter C. Junk B D , Gerd Meyer C , Jennyfer Sierau A C and David R. Turner A DA School of Chemistry, Monash University, Melbourne, Vic. 3800, Australia.
B School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Qld 4811, Australia.
C Universität zu Köln, Institut für Anorganische Chemie, D-50939 Köln, Germany.
D Corresponding authors. Email: peter.junk@jcu.edu.au; david.turner@monash.edu
Australian Journal of Chemistry 67(9) 1251-1256 https://doi.org/10.1071/CH14191
Submitted: 31 March 2014 Accepted: 9 April 2014 Published: 7 May 2014
Abstract
Reactions of 8-hydroxyquinoline (HOQ) with elemental rare-earth and transition metal combinations or alloys at 200–300°C yielded a variety of complexes, albeit in very low yields, including two structurally characterised homometallic complexes containing an unexpected biquinolinolate ligand. Reaction of HOQ with SmCo5 alloy gives rise to the complexes [SmCo2(OQ)7] (1), [Co4(OQ)4(BQ)2] (2), and [Sm3(OQ)5(BQ)2(H2O)] (3Sm), where BQ is 2,7′-biquinoline-8,8′-diolate, resulting from an unusual coupling reaction between two OQ/HOQ species at the 2 and 7′ positions. Complexes 1–3 and HOQ co-crystal 2·2HOQ were isolated as single crystals from separate reactions although formation of other products under the reaction conditions used was likely. Analogues of 3Sm with erbium and ytterbium were obtained using respective rare-earth metal filing in combination with nickel powder. Reaction involving cobalt powder only, without any rare-earth metals, yielded a homoleptic complex containing only the 8-quinolinolate ligand i.e. [Co4(OQ)8] (4). These results highlight the rewards, in terms of rich synthetic chemistry, and pitfalls, in terms of yield and isolation, of the pseudo-solid state synthetic approach using 8-quinolinolate ligands.
References
[1] (a) R. G. W. Hollingshead, Oxine and its Derivatives, Vol. I 1954 (Butterworth: London).(b) J. P. Phillips, Chem. Rev. 1956, 56, 271.
| Crossref | GoogleScholarGoogle Scholar |
[2] F. Artizzu, P. Deplano, L. Marchio, M. L. Mercuri, L. Pilia, A. Serpe, F. Quochi, R. Orru, F. Cordella, F. Meinardi, R. Tubino, A. Mura, G. Bongiovanni, Inorg. Chem. 2005, 44, 840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCksQ%3D%3D&md5=d6c8b0ac0f45769fda27574d5bddec7bCAS | 15859258PubMed |
[3] N. F. Chilton, G. B. Deacon, O. Gazukin, P. C. Junk, B. Kersting, S. K. Langley, B. Moubaraki, K. S. Murray, F. Schleife, M. Shome, D. R. Turner, J. A. Walker, Inorg. Chem. 2014, 53, 2528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWgt70%3D&md5=9f402e4a50fefde3691c0724b4b4157dCAS | 24520896PubMed |
[4] S. G. Leary, G. B. Deacon, P. C. Junk, Z. Anorg. Allg. Chem. 2005, 631, 2647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wmt77N&md5=1a295c98b7c3bc58212e36ae4eae4ea3CAS |
[5] Z. F. Chen, X. Y. Song, Y. Peng, X. Hong, Y. C. Liu, H. Liang, Dalton Trans. 2011, 40, 1684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVCnt74%3D&md5=b0e1f536dabca4487f520d6623cef0c4CAS | 21258737PubMed |
[6] M. A. Katkova, T. V. Balashova, A. P. Pushkarev, I. Y. Ilyin, G. K. Fukin, E. V. Baranov, S. Y. Ketkov, M. N. Bochkarev, Dalton Trans. 2011, 40, 7713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOrtrs%3D&md5=4f26587ee839fedd57e13172d0aa43baCAS | 21584296PubMed |
[7] (a) G. B. Deacon, P. C. Junk, S. G. Leary, Z. Anorg. Allg. Chem. 2004, 630, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslarsbs%3D&md5=e6080461ff45fb7f3560e349e587e287CAS |
(b) G. B. Deacon, P. C. Junk, S. G. Leary, A. Urbatsch, Z. Anorg. Allg. Chem. 2012, 638, 2001.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. B. Deacon, C. M. Forsyth, P. C. Junk, S. G. Leary, New J. Chem. 2006, 30, 592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFSrtLc%3D&md5=fbd765b33cf949c019c7035e6e74666eCAS |
[9] (a) G. B. Deacon, C. M. Forsyth, P. C. Junk, U. Kynast, G. Meyer, J. Moore, J. Sierau, A. Urbatsch, J. Alloy. Compd. 2008, 451, 436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Ggt70%3D&md5=71cd90f136d98be6d09c4a219c8f833eCAS |
(b) G. B. Deacon, C. M. Forsyth, P. C. Junk, A. Urbatsch, Eur. J. Inorg. Chem. 2010, 2010, 2787.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. B. Deacon, P. C. Junk, D. R. Turner, J. A. Walker, Aust. J. Chem. 2013, 66, 1138.
| 1:CAS:528:DC%2BC3sXhsFGrsLzL&md5=f3228917e92c7219dda71fce0d389094CAS |
[11] G. B. Deacon, T. Dierkes, M. Huebner, P. C. Junk, Y. Lorenz, A. Urbatsch, Eur. J. Inorg. Chem. 2011, 2011, 4338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGisbvN&md5=2910f92e0a04fb30c53858a4787bbe77CAS |
[12] G. Meyer, Z. Anorg. Allg. Chem. 2008, 634, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyksLk%3D&md5=a7305047c967c59ccb279800af662437CAS |
[13] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |
[14] W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=9419610f4cb6fb932fb5c42cc5bcbb43CAS |
[15] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS | 18156677PubMed |
[16] Yes Minister, 16 March 1981, BBC2, UK.
[17] S. M. Chen, X. Z. Zhang, F. R. Sun, X. D. Chai, T. J. Li, in Enzyme Engineering XIV (Eds A. I. Laskin, G. X. Li, Y. You, Y. T. Yu) 1998, Annals of the New York Academy of Sciences Vol. 864, pp. 244–249 (New York Academy of Sciences: New York, NY).
[18] M. C. Stevic, L. M. Ignjatovic, G. Ciric-Marjanovic, S. M. Stanisic, D. M. Stankovic, J. Zima, Int. J. Electrochem. Sci 2011, 6, 2509.
| 1:CAS:528:DC%2BC3MXos1ers7g%3D&md5=b9d2daeb72a4465c49996f99fd4f1352CAS |
[19] J. P. Phillips, J. F. Deye, T. Leach, Anal. Chim. Acta 1960, 23, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXhtFKnt74%3D&md5=aff4630b3bfd10516ed39916df5dfcdaCAS |
[20] (a) R. Gopalchan, M. L. Dhar, J. Sci. Ind. Research Sect. B 1960, 19C, 233.
(b) S. Nakano, Yakugaku Zasshi (J. Pharm. Soc. Jap.) 1962, 82, 492.
[21] (a) F. H. Allen, Acta Crystallogr. B 2002, 58, 380.
| Crossref | GoogleScholarGoogle Scholar | 12037359PubMed |
(b) Cambridge Structural Database 2009. Ver. 5.31 with November 2009 updates.
[22] P. Mestichelli, M. J. Scott, W. R. J. D. Galloway, J. Selwyn, J. S. Parker, D. R. Spring, Org. Lett. 2013, 15, 5448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CktLbI&md5=45cbe869b67fe291ae16176adade3d0cCAS | 24134806PubMed |
[23] S. G. Torres, I. Pantenburg, G. Meyer, Z. Anorg. Allg. Chem. 2006, 632, 1989.
| Crossref | GoogleScholarGoogle Scholar |
[24] Y. Kai, M. Morita, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 1985, 58, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1aqs7o%3D&md5=9532eaf207becb85b8c511410d8b60bfCAS |