Recent Advances Using Guanidinate Ligands for Chemical Vapour Deposition (CVD) and Atomic Layer Deposition (ALD) Applications
Agnieszka Kurek A C , Peter G. Gordon A , Sarah Karle B , Anjana Devi B and Seán T. Barry AA Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
B Inorganic Materials Chemistry, Ruhr-University Bochum Universitätsstrasse 150, D-44801 Bochum, Germany.
C Corresponding author. Email: agneskurek@gmail.com
Agnieszka Kurek is an Ontario Government Scholar and Ph.D. candidate in the Chemistry Department at Carleton University, Ottawa, Canada. She completed her B.Sc. Hons degree in Chemistry from Carleton University in 2009. She was awarded an Ireland Canada University Foundation scholarship to study abroad in Cork, Ireland, where she collaborated with Dr Martyn Pemble at Tyndall National Institute and University College Cork. Under Professor Seán Barry, her research is focussed on coinage metal precursor design and synthesis as well as deposition of thin films using chemical vapour deposition (CVD) and atomic layer deposition (ALD). |
Peter George Gordon is a Post-Doctoral Fellow at Carleton University in Ottawa, Canada. Dr Gordon completed his B.Sc. in Chemistry at the University of Waterloo and went on to undertake an M.Sc. in Chemistry at the Steacie Institute of the National Research Council Canada under John Ripmeester, where he used solid-state NMR to study ionic liquids. He completed his Ph.D. in Chemistry at Carleton University under Professor Seán Barry, where he focussed on CVD and ALD as well as volatile precursor design. Dr Gordon currently holds a Mitacs Elevate Postdoctoral Fellowship with Precision Molecular Design Corporation at Carleton University, where he continues to pursue precursor design, CVD and ALD. |
Sarah Karle studied chemistry at the Ruhr-University in Bochum, where she obtained her B.Sc. degree (2011) and her M.Sc. degree (2013) in inorganic chemistry–functional materials under the supervision of Professor A. Devi. Currently, she is a graduate student in the group of Professor Devi at the Ruhr-University of Bochum. Her research covers the synthesis and analysis of CVD and ALD precursors, as well as the deposition of rare-earth-metal-containing thin films via CVD and ALD and their analysis. |
Anjana Devi received a B.Sc. (1989) in Chemistry, Physics, and Mathematics and an M.Sc. (1991) in Materials Science from Mangalore University, followed by a Ph.D. (1998) from the Materials Research Center (MRC), Indian Institute of Science (IISc), Bangalore, India. She moved to Germany (1998) for post-doctoral studies with a fellowship awarded by the Alexander von Humboldt Foundation. She is an associate professor in the Faculty of Chemistry and Biochemistry at the Ruhr-University Bochum. Her research interests include precursor chemistry, ALD, metal-organic CVD and solution processing of materials of high-K oxides, transparent conducting oxides, metal nitrides for microelectronic, optoelectronic, spintronic, photocatalysis, and sensor applications. |
Seán Barry is an Associate Professor at Carleton University in Ottawa, Canada. His Ph.D. is from the University of Ottawa (1996) in inorganic synthetic chemistry. He spent several years working on precursors for Roy Gordon (Harvard University, 1998–2003). He started at Carleton in 2003 working on guanidinates of the Group 13 metals (Al, Ga, In), and has recently studied guanidinates and other ligands for the coinage metals (Cu, Ag, Au). His group works mainly on the mechanisms of thermal decomposition and thin-film deposition, and is keenly interested in developing processes for depositing gold and silver metal films by ALD. |
Australian Journal of Chemistry 67(7) 989-996 https://doi.org/10.1071/CH14172
Submitted: 26 March 2014 Accepted: 2 May 2014 Published: 16 June 2014
Abstract
Volatile metal complexes are important for chemical vapour deposition (CVD) and atomic layer deposition (ALD) to deliver metal components to growing thin films. Compounds that are thermally stable enough to volatilize but that can also react with a specific substrate are uncommon and remain unknown for many metal centres. Guanidinate ligands, as discussed in this review, have proven their utility for CVD and ALD precursors for a broad range of metal centres. Guanidinate complexes have been used to deposit metal oxides, metal nitrides and pure metal films by tuning process parameters. Our review highlights use of guanidinate ligands for CVD and ALD of thin films over the past five years, design trends for precursors, promising precursor candidates and discusses the future outlook of these ligands.
References
[1] A. Devi, S. Cwik, K. Xu, A. P. Milanov, H. Noei, Y. Wang, D. Barreca, J. Meijer, D. Rogalla, D. Kahn, R. Cross, H. Parala, S. Paul, Thin Solid Films 2012, 520, 4512.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Wht7o%3D&md5=1540472fccf1cae4caf98d62d045750bCAS |
[2] F. T. Edelmann, Chem. Soc. Rev. 2012, 41, 7657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ahtbrJ&md5=9f2091fd8407ef50e0f03f405f6932cdCAS | 22777063PubMed |
[3] K. Xu, A. P. Milanov, H. Parala, C. Wenger, C. Baristiran-Kaynak, K. Lakribssi, T. Toader, C. Bock, D. Rogalla, H.-W. Becker, U. Kunze, A. Devi, Chem. Vap. Depos. 2012, 18, 27.
| Crossref | GoogleScholarGoogle Scholar |
[4] S. T. Barry, P. G. Gordon, M. J. Ward, M. J. Heikkila, W. H. Monillas, G. P. A. Yap, M. Ritala, M. Leskelä, Dalton Trans. 2011, 9425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFektL3E&md5=b11b7fc9aeb6ffbf10904e4970fb4d69CAS | 21845283PubMed |
[5] T. Prieur, V. Brizé, T. Cornier, B. Doisneau, A. Farcy, R. Boichot, A. Mantoux, S. Daniele, E. Blanquet, J. Nanosci. Nanotechnol. 2011, 11, 8383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOrsr7M&md5=c1e5832f048146dfb3617a5d9fcae02cCAS | 22097589PubMed |
[6] A. P. Milanov, K. Xu, A. Laha, E. Bugiel, R. Ranjith, D. Schwendt, H. J. Osten, H. Parala, R. A. Fischer, A. Devi, J. Am. Chem. Soc. 2010, 132, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtLvJ&md5=73a08fb9c537ac743eb350cfe622d529CAS | 20000721PubMed |
[7] V. Miikkulainen, M. Leskelä, M. Ritala, R. L. Puurunen, J. Appl. Phys. 2013, 113, 021301.
| Crossref | GoogleScholarGoogle Scholar |
[8] C. J. Carmalt, A. C. Newport, S. A. O’Neill, I. P. Parkin, A. J. P. White, D. J. Williams, Inorg. Chem. 2005, 44, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1amtA%3D%3D&md5=06e17d47d65a48a4656dabf14f1d1c14CAS | 15679392PubMed |
[9] A. P. Kenney, G. P. A. Yap, D. S. Richeson, S. T. Barry, Inorg. Chem. 2005, 44, 2926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFajsbk%3D&md5=08ee607b8baf8fdd98a962790277fb5eCAS | 15819580PubMed |
[10] J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, J. Müller, Inorg. Chem. 2010, 49, 2844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGqu7Y%3D&md5=5a67573bedbf4d6a88a37ade0e4e4976CAS | 20151641PubMed |
[11] T. B. Thiede, M. Krasnopolski, A. P. Milanov, T. de los Arcos, A. Ney, H.-W. Becker, D. Rogalla, J. Winter, A. Devi, R. A. Fischer, Chem. Mater. 2011, 23, 1430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVWrs7o%3D&md5=84c3966909b429497c38ee828702e852CAS |
[12] T. A. Mih, S. Paul, A. P. Milanov, R. Bhakta, A. Devi, ECS Trans. 2009, 25, 901.
| 1:CAS:528:DC%2BD1MXhtlOjurjE&md5=7112630c0394d57645c384793f6c56b0CAS |
[13] S. J. Kim, K. Xu, H. Parala, R. Beranek, M. Bledowski, K. Sliozberg, H.-W. Becker, D. Rogalla, D. Barreca, C. Maccato, C. Sada, W. Schuhmann, R. A. Fischer, A. Devi, Chem. Vap. Depos. 2013, 19, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOntLk%3D&md5=4849f19c635e6247764a3ce88af6d909CAS |
[14] K. Xu, A. P. Milanov, M. Winter, D. Barreca, A. Gasparotto, H.-W. Becker, A. Devi, Eur. J. Inorg. Chem. 2010, 1679.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Eleter, S. Daniele, V. Brize, C. Dubourdieu, C. Lachaud, N. Blasco, A. Pinchart, ECS Trans. 2009, 25, 151.
| 1:CAS:528:DC%2BD1MXhtlOjtbnM&md5=5e82b7e8abcd1ff819bb560f4aa9d7d8CAS |
[16] A. P. Milanov, T. B. Thiede, A. Devi, R. A. Fischer, J. Am. Chem. Soc. 2009, 131, 17062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOksr%2FO&md5=bfc3a1616d2f32bc3b2096cfbb38a95dCAS | 19894714PubMed |
[17] A. P. Milanov, K. Xu, S. Cwik, H. Parala, T. de los Arcos, H.-W. Becker, D. Rogalla, R. Cross, S. Paul, A. Devi, Dalton Trans. 2012, 13936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFygurjF&md5=36ec7d3dc4584b13b3f913088e4c362aCAS | 23023387PubMed |
[18] J. P. Coyle, W. H. Monillas, G. P. A. Yap, S. T. Barry, Inorg. Chem. 2008, 47, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsbzE&md5=e3a3dab8399c6ae16fe63b591ff0e612CAS | 18095672PubMed |
[19] L.-Y. Shao, J. P. Coyle, S. T. Barry, J. Albert, Opt. Mater. Express 2011, 1, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFanu7s%3D&md5=c16204ccf599aaf060a08f31d1046a23CAS |
[20] T. Kim, Y. Yao, J. P. Coyle, T. Barry, F. Zaera, Chem. Mater. 2013, 25, 3630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjsLrN&md5=efe3a3af49dd638f19057c8a2d630153CAS |
[21] M. Gebhard, M. Hellwig, H. Parala, K. Xu, M. Winter, A. Devi, Dalton Trans. 2014, 937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWlur7P&md5=cf5f40934c22560ed134797729ab2adcCAS | 24264622PubMed |
[22] A. P. Milanov, T. Toader, H. Parala, D. Barreca, A. Gasparotto, C. Bock, H.-W. Becker, D. K. Ngwashi, R. Cross, S. Paul, U. Kunze, R. A. Fischer, A. Devi, Chem. Mater. 2009, 21, 5443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSjsLjF&md5=5d9534a7cd57a715c5856244793c95e9CAS |
[23] A. P. Milanov, T. Thiede, M. Hellwig, H. Parala, C. Bock, H.-W. Becker, D. Ngwashi, R. Cross, S. Paul, U. Kunze, R. Fischer, A. Devi, ECS Trans. 2009, 25, 143.
| 1:CAS:528:DC%2BD1MXhtlOjtbjF&md5=2acd670835865c3da4352c5b72519801CAS |
[24] R. Ranjith, A. Laha, E. Bugiel, H. J. Osten, K. Xu, A. P. Milanov, A. Devi, Semicond. Sci. Technol. 2010, 25, 105001.
| Crossref | GoogleScholarGoogle Scholar |
[25] K. Xu, R. Ranjith, A. Laha, H. Parala, A. P. Milanov, R. A. Fischer, E. Bugiel, J. Feydt, S. Irsen, T. Toader, C. Bock, D. Rogalla, H.-J. Osten, U. Kunze, A. Devi, Chem. Mater. 2012, 24, 651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKkurg%3D&md5=343f50341b7df0d448a73d09cd7a550fCAS |
[26] T. Chen, W. Hunks, P. S. Chen, G. T. Stauf, T. M. Cameron, C. Xu, A. G. DiPasquale, A. L. Rheingold, Eur. J. Inorg. Chem. 2009, 2047.
| Crossref | GoogleScholarGoogle Scholar |
[27] T. Chen, W. Hunks, P. S. Chen, C. Xu, A. G. DiPasquale, A. L. Rheingold, Organometallics 2010, 29, 501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOisr%2FM&md5=c1eafdab7750891dc9a50e2ee17d5375CAS |
[28] M. Eleter, L. G. Hubert-Pfalzgraf, S. Daniele, G. Pilet, B. Tinant, Polyhedron 2010, 29, 2522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovV2hsrs%3D&md5=853a33a16af705e21dbf38cffbf61feeCAS |
[29] T. Chen, C. Xu, T. H. Baum, G. T. Stauf, J. F. Roeder, A. G. DiPasquale, A. L. Rheingold, Chem. Mater. 2010, 22, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtrzN&md5=fae050645a46e321cf03381c2dbf1a16CAS |
[30] T. Thiede, V. Gwildies, L. Alsamann, D. Rische, R. Fischer, ECS Trans. 2009, 25, 593.
| 1:CAS:528:DC%2BD1MXhtlOjurzF&md5=9fc70396131762ae7913daa95a1af3c2CAS |
[31] Y.-S. Won, S.-S. Park, Bull. Korean Chem. Soc. 2010, 31, 2416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyksrnK&md5=2b3842c0bf6ccdecc1746b958a75c219CAS |
[32] C. Blackman, C. Carmalt, S. Moniz, S. E. Potts, H. Davies, D. Pugh, ECS Trans. 2009, 25, 561.
| 1:CAS:528:DC%2BD1MXhtlOjurzI&md5=4f13f5b66a89776bba78dec90e046e1cCAS |
[33] M. Reiners, K. Xu, N. Aslam, A. Devi, R. Waser, S. Hoffman-Eifert, Chem. Mater. 2013, 25, 2934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCgsrzJ&md5=7bc23c7eba7275891439a470c611dee6CAS |
[34] K. Xu, A. R. Chaudhuri, H. Parala, D. Schwendt, T. de los Arcos, H. J. Osten, A. Devi, J. Mater. Chem. C 2013, 1, 3939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWksr4%3D&md5=3de8ccef389ee1ccb0eb83d39daa172bCAS |
[35] Y. A. Wasslen, E. Tois, S. Haukka, K. A. Kreisel, G. P. A. Yap, M. D. Halls, S. T. Barry, Inorg. Chem. 2010, 49, 1976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1aitQ%3D%3D&md5=dc042fbfd2a666120b530b518edaacf9CAS | 20067239PubMed |
[36] T. J. J. Whitehorne, J. P. Coyle, A. Mahmood, W. H. Monillas, G. P. A. Yap, S. T. Barry, Eur. J. Inorg. Chem. 2011, 3240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlKhtLc%3D&md5=47d432aa3f59bf3f048a2bd5a3946ef0CAS |