Unexpected Pyrolytic Behaviour of Substituted Benzo[c]thiopyran and Thieno[2,3-c]thiopyran S,S-dioxides
R. Alan Aitken A C , Clémence Hauduc A , M. Selim Hossain B , Emily McHale A , Adrian L. Schwan B , Alexandra M. Z. Slawin A and Colin A. Stewart AA School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
B Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
C Corresponding author. Email: raa@st-and.ac.uk
Australian Journal of Chemistry 67(9) 1288-1295 https://doi.org/10.1071/CH14155
Submitted: 16 March 2014 Accepted: 23 April 2014 Published: 30 May 2014
Abstract
Flash vacuum pyrolysis (FVP) of benzo[c]thiopyran S,S-dioxide (1) results in formation of indene and 2-vinylbenzaldehyde as previously described. A range of eight analogues with various substitution patterns are found to behave differently. In general, there is no extrusion of SO2 to give products analogous to indene, but unsaturated carbonyl products analogous to 2-vinylbenzaldehyde are formed in most cases by way of ring expansion to a 7-membered ring sultine, extrusion of SO, and intramolecular hydrogen atom transfer. Other processes observed include formation of anthracene via an isomeric 7-membered sultine with loss of SO, CO and methane or butane, and formation of 4-ethylidene-4,5-dihydrocyclobuta[b]thiophenes by way of SO loss, a radical rearrangement, and extrusion of acetone. The analogues with a halogen substituent at position 8 on the benzene ring require a higher temperature to react and give naphthalene resulting from net elimination of HX and SO2. The X-ray crystal structure of 1 is also reported.
References
[1] R. A. Aitken, I. Gosney, J. I. G. Cadogan, in Progress in Heterocyclic Chemistry (Eds H. Suschitzky, E. F. V. Scriven) 1992, Vol. 4, pp. 1–32 (Pergamon Press: Oxford).[2] R. A. Aitken, I. Gosney, J. I. G. Cadogan, in Progress in Heterocyclic Chemistry (Eds H. Suschitzky, E. F. V. Scriven) 1993, Vol. 5, pp. 1–33 (Pergamon Press: Oxford).
[3] J. D. Finlay, C. R. Hall, D. J. H. Smith, Tetrahedron Lett. 1977, 18, 1149.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. R. Hall, D. J. H. Smith, Tetrahedron Lett. 1974, 15, 3633.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. S. Hossain, A. L. Schwan, Org. Lett. 2011, 13, 5330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrs7nF&md5=52d760733a53c33d0888ae3b44548c16CAS | 21913680PubMed |
[6] G. Pagani, S. Maiorana, Chim. Ind. 1967, 49, 1347.
| 1:CAS:528:DyaF1cXktVars7o%3D&md5=3640278a65f6cf801e1a64468c7a0441CAS |
[7] A. K. Kiang, F. G. Mann, J. Chem. Soc. 1951, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XlsFKh&md5=9c1ca6790db79c093362b04d4ececacfCAS |
[8] I. W. J. Still, M. T. Thomas, J. Org. Chem. 1968, 33, 2730.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVektr8%3D&md5=65358874df34c087239f74b21eb30037CAS |
[9] R. A. Aitken, S. T. E. Mesher, F. C. Ross, B. M. Ryan, Synthesis 1997, 787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVGnuro%3D&md5=c9a88185e51e8dd00e99ad52897674d4CAS |
[10] S. Bradamante, S. Maiorana, A. Mangia, G. Pagani, J. Chem. Soc. B 1971, 74.
| Crossref | GoogleScholarGoogle Scholar |
[11] C. Glidewell, J. N. Low, J. M. S. Skakle, J. L. Wardell, Acta Crystallogr. C 2004, 60, o350.
| Crossref | GoogleScholarGoogle Scholar | 15131389PubMed |
[12] G. D. Andreetti, G. Bocelli, P. Sgarabotto, Cryst. Struct. Commun. 1974, 3, 309.
| 1:CAS:528:DyaE2cXksValur8%3D&md5=014e1eed96eba499f3f1d700fd3d9d67CAS |
[13] G. D. Andreetti, G. Bocelli, P. Sgarabotto, Cryst. Struct. Commun. 1974, 3, 313.
| 1:CAS:528:DyaE2cXksValurw%3D&md5=d8521ee2da8c7821733db09c112f4c75CAS |
[14] L. T. Byrne, M. Phomakotr, C. Poolsanong, V. Reutrakul, B. W. Skelton, A. H. White, Aust. J. Chem. 2003, 56, 715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFSisLk%3D&md5=0260ea9883c46cd139387a09ebb3ddb1CAS |
[15] E. de B. Barnett, J. W. Cook, I. G. Nixon, J. Chem. Soc. 1927, 504.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. K. C. Chu, M. F. Tchir, J. Chem. Soc. Chem. Commun. 1973, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXivVGq&md5=a992c7faad2bc7c2054ec641e6ec90abCAS |
[17] L. M. Tolbert, J. Org. Chem. 1979, 44, 4584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitFyguw%3D%3D&md5=47a253cd2b4b8906d5d4d1790dc59a7eCAS |
[18] W. R. Roth, V. Rekowski, S. Börner, M. Quast, Liebigs Ann. Chem. 1996, 409.
| 1:CAS:528:DyaK28XhsVKjsLk%3D&md5=39b6778879b2a712c03defcffcec76efCAS |
[19] S. J. Collier, R. C. Storr, in Progress in Heterocyclic Chemistry (Eds G. W. Gribble, T. L. Gilchrist) 1998, Vol. 10, pp. 25–48 (Pergamon Press: Oxford).
[20] P. M. S. Chauhan, G. Jenkins, S. M. Walker, R. C. Storr, Tetrahedron Lett. 1988, 29, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsV2ht7k%3D&md5=d16d67d2e141bb1725109b8fba62b24dCAS |
[21] N. Münzel, A. Schweig, Chem. Ber. 1988, 121, 791.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. F. C. Brown, G. E. Gream, D. E. Peters, R. K. Solly, Aust. J. Chem. 1968, 21, 2223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXjsF2k&md5=76776ac2acb27f02f8ab6b5b0c1a9db3CAS |
[23] R. S. Grainger, B. Patel, B. M. Kariuki, Angew. Chem. Int. Ed. 2009, 48, 4832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlOitL4%3D&md5=76877390ce71bd351d5800d76d635276CAS |
[24] L. H. Klemm, W. C. Solomon, A. P. Tamiz, J. Org. Chem. 1998, 63, 6503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1WqtL4%3D&md5=20ca25fff205759b0cd05cb707791da6CAS |
[25] M.-Y. Lin, A. Das, R.-S. Liu, J. Am. Chem. Soc. 2006, 128, 9340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Knuro%3D&md5=00ccec6be0b6d4ba8185506ce1666c76CAS | 16848463PubMed |
[26] K. Toshima, K. Ohta, T. Ohtake, K. Tatsuta, J. Chem. Soc. Chem. Commun. 1991, 694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslWgtLY%3D&md5=c457d4767473efe3806cbc216e809fecCAS |
[27] K. Toshima, K. Ohta, A. Ohtsuka, S. Matsumura, M. Nakata, J. Chem. Soc. Chem. Commun. 1993, 1406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVClsbw%3D&md5=a8464977fe32138472e32b09261db919CAS |
[28] M. S. Chauhan, I. W. J. Still, Can. J. Chem. 1975, 53, 2880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XjslWisQ%3D%3D&md5=9cf029fae24764b640607fe62d6a4a5eCAS |
[29] R. A. Aitken, J. I. Atherton, J. Chem. Soc., Perkin Trans. 1 1994, 1281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVOmurw%3D&md5=cdcd3b4d9b8d77bbc1bbb57d97c8321fCAS |
[30] E. Pretsch, P. Bühlmann, C. Affolter, Structure Determination of Organic Compounds, 3rd Edn 2000 (Springer: Berlin).
[31] U. Edlund, Org. Magn. Resonance 1978, 11, 516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1Okurg%3D&md5=3f0975de271cd346d34fe6b6b1dc9b24CAS |
[32] E. Peyroux, F. Berthiol, H. Doucet, M. Santelli, Eur. J. Org. Chem. 2004, 1075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVGgsLg%3D&md5=b421efb00798d1c0796c53162fdaac28CAS |
[33] T. M. Gøgsig, L. S. Søbjerg, A. T. Lindhardt, K. L. Jensen, T. Skrydstrup, J. Org. Chem. 2008, 73, 3404.
| 18380442PubMed |