Synergistic Antibacterial Activity of Nanohybrid Materials ZnO–Ag and ZnO–Au: Synthesis, Characterization, and Comparative Analysis of Undoped and Doped ZnO Nanoparticles
Adriana Berenice Pérez Jiménez A , Carlos Alberto Huerta Aguilar A , Jorge Manuel Vázquez Ramos A and Pandiyan Thangarasu A BA Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D.F., México.
B Corresponding author. Email: pandiyan@servidor.unam.mx
Australian Journal of Chemistry 68(2) 288-297 https://doi.org/10.1071/CH14123
Submitted: 11 March 2014 Accepted: 28 April 2014 Published: 12 June 2014
Abstract
ZnO nanoparticles (NPs) were prepared using the hydrothermal method, and then doped with Ag or Au NPs, yielding ZnO NPs, ZnO–Ag NPs, and ZnO–Au NPs, which were characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The synthesized nanomaterials were analyzed for their antibacterial properties against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella typhi) by qualitative and quantitative assays. Minimal inhibitory concentration (MIC) results show that growth control is more effective for Gram-positive bacteria than for Gram-negative bacteria. Although ZnO NPs and Ag NPs are antibacterial agents, the lowest bacterial growth was observed for ZnO–Ag NPs, showing that the doped Ag NPs greatly facilitate the interaction between the microbial cells and the NP surface. Though the same antibacterial effect was expected for ZnO–Au NPs, the inhibition activity was very close to that of ZnO NPs. The order of bacterial cell growth inhibition was ZnO–Ag NPs >> ZnO–Au NPs ~ ZnO NPs >> ZnO powder. We also analyzed the morphology of bacterial cells treated with NPs by scanning electron microscopy.
References
[1] A. P. Alivisatos, Science 1996, 271, 933.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCrtb0%3D&md5=3eb9a23cb18d432401ae5370b24491fcCAS |
[2] M. Brust, C. J. Kiely, Colloid. Surface. A 2002, 202, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1Oms7k%3D&md5=b7d1048a6878986ec47fb5bab3373461CAS |
[3] X. Ren, C. Chen, M. Nagatsu, X. Wang, Chem. Eng. J. 2011, 170, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslahsLo%3D&md5=6ae2b926c2112c77e104a6d5030bd3adCAS |
[4] M. Geszke-Moritz, M. Moritz, Mat. Sci. Eng. C 2013, 33, 1008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOqurw%3D&md5=696b7ac03ff66cebec7e0f9965a784b9CAS |
[5] M. Moritz, M. Laniecki, J. Solid State Chem. 2011, 184, 1761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGgs7o%3D&md5=482438506ce3eef82616bed5a394dee4CAS |
[6] A. M. Caminade, J. P. Majoral, Accounts Chem. Res. 2004, 37, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ektr4%3D&md5=b5539932e513f088ee37944570a5259cCAS |
[7] V. Sigot, D. J. Arndt-Jovin, T. M. Jovin, Bioconjugate Chem. 2010, 21, 1465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGgurk%3D&md5=dff4bbdcfce19a2c661cc1052dce421cCAS |
[8] T. Gan, S. Hu, Microchim. Acta 2011, 175, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WktbnJ&md5=134eecc0ec9e5219c9b58b690ce3ef26CAS |
[9] P. Prombutara, Y. Kulwatthanasal, N. Supaka, I. Sramala, S. Chareonpornwattana, Food Control 2012, 24, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanu7jJ&md5=a0308e85ea8562817659027dbf938c60CAS |
[10] V. K. Sharma, R. A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 2009 , 145, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKntLbF&md5=4c9588d3ca845ba6b91cbad89bff28c0CAS | 18945421PubMed |
[11] K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, O. D. Velev, Science 2001, 294, 1082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Krsbk%3D&md5=517fbc507df18e5f2edaf8e659709d54CAS | 11691987PubMed |
[12] Z. H. Zhou, S. L. Wang, W. J. Zhou, G. X. Wang, L. H. Jiang, W. Z. Li, Chem. Commun. 2003, 394.
| 1:CAS:528:DC%2BD3sXlslCktA%3D%3D&md5=e7533e7070ba79755d8d198cb9798b76CAS |
[13] J. H. Kim, S. M. Lee, B. H. Jun, H. J. Choi, J. S. Kim, M. H. Cho, Nanomed.-Nanotechnol. 2007, 3, 341.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. S. Kim, E. Kuk, K. N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, Nanomed.-Nanotechnol. 2007, 3, 95.
| 1:CAS:528:DC%2BD2sXktFCms7s%3D&md5=0abc6aa88f20a5677977faeadf073895CAS |
[15] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, J. Phys. Chem. B 2006, 110, 16248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFemt7s%3D&md5=b61d1ac4f64114c98378d93f3c5943d8CAS | 16913750PubMed |
[16] Nanomaterials: Toxicity, Health, and Environmental Issues (Ed. C. Kumar) 2006 (Wiley-VHC: Weinheim).
[17] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, Nature 2009, 459, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2ltrs%3D&md5=062457faeff18c679b41bf3358ef192aCAS | 19424153PubMed |
[18] K. A. Howard, J. Kjems, Expert Opin. Biol. Ther. 2007, 7, 1811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlClsLfN&md5=39006a03868ce75c1adf1a663d45d573CAS | 18034647PubMed |
[19] M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptV2rtLs%3D&md5=5e7e5cdee8c87505fa8048a505c56f1dCAS |
[20] M. Vallet-Regi, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2ku7jO&md5=c452b0fc098bb497bb3bd7deb5508a73CAS |
[21] M. Geszke-Moritz, H. Piotrowska, M. Murias, L. Balan, M. Moritz, J. Lulek, J. Mater. Chem. B 2013, 1, 698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVakug%3D%3D&md5=a509e2aa2d01c5248bece83b30f51155CAS |
[22] M. Geszke, M. Murias, L. Balan, G. Medjandi, J. Korczynski, M. Moritz, Acta Biomater. 2011, 7, 1327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12htrc%3D&md5=048e57a3e0259ed8079b556caf3a0a84CAS | 20965282PubMed |
[23] M. Moritz, M. Geszke-Moritz, Przem. Chem. 2012, 91, 2375.
| 1:CAS:528:DC%2BC3sXivVejsL0%3D&md5=36f7597f8cf344be42fa7189e8ccecd8CAS |
[24] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, J. Appl. Phys. 2005, 98, 041301.
[25] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, Thin Solid Films 1999, 351, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1eju70%3D&md5=f32b97fbeb5a1c2e703fcfd6df1d7938CAS |
[26] M. Jaisai, S. Baruah, J. Dutta, Beilstein. J. Nanotechnol. 2012, 3, 684.
| 1:CAS:528:DC%2BC3sXhtlertLbL&md5=e967f24c7230072caa8dd77c69eb74bdCAS | 23213632PubMed |
[27] N. Serpone, D. Dondi, A. Albini, Inorg. Chim. Acta 2007, 360, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFOmtA%3D%3D&md5=d132a5610e3a99fa1ca94f0431511ec9CAS |
[28] J. Sawai, J. Microbiol. Methods 2003, 54, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFWnurc%3D&md5=9b010f7462149663107445e29f044ef1CAS | 12782373PubMed |
[29] W. Jiang, H. Mashayekhi, B. Xing, Environ. Pollut. 2009, 157, 1619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ks7w%3D&md5=c5b6b6af97f9a2bfac87c31b08c54960CAS | 19185963PubMed |
[30] Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, M. Lin, J. Appl. Microbiol. 2009, 107, 1193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCjtLnE&md5=88393fd6d004e024af1b9ea42ba0ac37CAS | 19486396PubMed |
[31] J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, J. Chem. Eng. Jpn. 1996, 29, 627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlSltLw%3D&md5=63ee57f24b874a2c9b55b6ba8f668503CAS |
[32] J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, J. Chem. Eng. Jpn. 1996, 29, 251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVWqs7w%3D&md5=44c771417bdb0d357349635715fc2416CAS |
[33] O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto, H. Kojima, J. Ceram. Soc. Jpn. 1998, 106, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvV2qtro%3D&md5=1f5963d1e81c9b6c57a7d544a8ddd17dCAS |
[34] O. Yamamoto, Int. J. Inorg. Mater. 2001, 3, 643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFak&md5=46b5101628c6d19c3890b8c0088fe7c4CAS |
[35] P. K. Stoimenov, R. L. Klinger, G. L. Marchin, K. J. Klabunde, Langmuir 2002, 18, 6679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltV2mt7s%3D&md5=fca33e3aaddde3717e6e71531edb6a1eCAS |
[36] S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, A. Gedanken, Adv. Funct. Mater. 2005, 15, 1708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOrtb7E&md5=7b8c0cba919631ce4991dd39b063c23fCAS |
[37] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, F. Fievet, Nano Lett. 2006, 6, 866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Wmtrw%3D&md5=0b4124861bc601c99c3d1b20951b9a78CAS | 16608300PubMed |
[38] H. A. Jeng, J. Swanson, J. Environ. Sci. Health A 2006, 41, 2699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yksbnO&md5=bdc10ade13cc66a786d0c94c45fc6b3cCAS |
[39] L. K. Adams, D. Y. Lyon, P. J. J. Alvarez, Water Res. 2006, 40, 3527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOgt7fN&md5=e55ae1049b30c08abdbe8277f56b6d56CAS | 17011015PubMed |
[40] L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, J. Nanopart. Res. 2007, 9, 479.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Singh, S. Singh, S. Prasad, I. S. Gambhir, Dig. J. Nanomater. Bios 2008, 3, 115.
[42] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, J. Biomed. Mater. Res. 2000, 52, 662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Cltbg%3D&md5=b709a9d2ce9146ad679fc6f49682afe7CAS | 11033548PubMed |
[43] P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xksl2nu7s%3D&md5=19d641dbd47b341849a1ab79c36856e2CAS |
[44] A. I. Lukman, B. Gong, C. E. Marjo, U. Roessner, A. T. Harris, J. Colloid Interface Sci. 2011, 353, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlygs7vI&md5=394a9a34bf26dfac1409e21ac5befceeCAS | 20974473PubMed |
[45] M. Maillard, S. Giorgio, M. P. Pileni, J. Phys. Chem. B 2003, 107, 2466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlWisrk%3D&md5=5cedbd332ddef8b7a38384782cea0a6aCAS |
[46] M. Valodkar, S. Modi, A. Pal, S. Thakore, Mater. Res. Bull. 2011, 46, 384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2mt70%3D&md5=f5f21718024d00ca9c0fd6dbf0d9a71cCAS |
[47] M. Banerjee, S. Sharma, A. Chattopadhyay, S. S. Ghosh, Nanoscale 2011, 3, 5120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmtLrF&md5=b83281e3e7ad7626e9a5d4127363a838CAS | 22057130PubMed |
[48] N. Sharma, J. Kumar, S. Thakur, S. Sharma, V. Shrivastava, Drug Invention Today 2013, 5, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWht73J&md5=de76402e1f7d28683e741044ad298617CAS |
[49] C. Karunakaran, V. Rajeswari, P. Gomathisankar, J. Alloy. Compd. 2010, 508, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrtLvE&md5=a0a5bb65008f0c426864e9a95afe4ba5CAS |
[50] S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi, H. N. Vasan, RSC Adv. 2012, 2, 930.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslWjsQ%3D%3D&md5=453713d46eeba4e6bf1d0ba5b483b980CAS |
[51] M. S. Hassan, T. Amna, F. A. Sheikh, S. S. Al-Deyab, K. E. Choi, I. H. Hwang, Ceram. Int. 2013, 39, 2503.
| Crossref | GoogleScholarGoogle Scholar |
[52] J. Lian, Y. Liang, F. Kwong, Z. Ding, D. Ng, Mater. Lett. 2012, 66, 318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagtr%2FN&md5=0c166bc3e044c9dc588fa569bc5cc47fCAS |
[53] V. Mirkhani, M. Tangestaninejad, M. H. Habibi, J. Iran. Chem. Soc. 2009, 6, 578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrsrfK&md5=36f6fe0f4a3a95558e3d62329977c0c2CAS |
[54] M. M. Kondo, W. F. Jardim, Water Res. 1991, 25, 823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFyqs7o%3D&md5=648eed1b79e8f755bc865437a979dda7CAS |
[55] V. Subramanian, E. E. Wolf, P. V. Kamat, Langmuir 2003, 19, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSnur8%3D&md5=ce03e8805bb39dd81fc1c2e01f1ea2ffCAS |
[56] Manual of Clinical Microbiology, 5th edn (Eds A. Balows, W. J. Hausler Jr, K. L. Herrmann, H. D. Isenberg, H. J. Shadomy) 1991 (American Society for Microbiology: Washington, DC).
[57] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, Y. B. Chen, Appl. Microbiol. Biotechnol. 2010, 85, 1115.
| 1:CAS:528:DC%2BC3cXjslWksw%3D%3D&md5=193195a03450f9c8a8c2934d8c3c2ee5CAS | 19669753PubMed |
[58] M. B. Coyle, Manual of Antimicrobial Susceptibility Testing 2005 (American Society for Microbiology: Seattle, WA).
[59] J. N. Eloff, Planta Med. 1998, 64, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlOjtA%3D%3D&md5=b4edd6ded3d439dee38ed8674491045aCAS | 9933989PubMed |
[60] A. A. Tayel, S. Moussa, K. Opwis, D. Knittel, E. Schollmeyer, A. Nickisch-Hartfiel, Int. J. Biol. Macromol. 2010, 47, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGitLc%3D&md5=fd131b4b0957ab4ca6530e3c0ed9f3f4CAS | 20416334PubMed |
[61] T. J. Marrie, J. W. Costerton, J. Clin. Microbiol. 1984, 19, 687.
| 1:STN:280:DyaL2c3ktVagtg%3D%3D&md5=1f82049783fe2a90c8ef9d5d4658807eCAS | 6429190PubMed |
[62] G. C. Bond, J. Mol. Catal. A Chem. 2000, 156, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslKjsbo%3D&md5=53b9ba72a14149900a868c5d00333777CAS |
[63] K. Nejati, Z. Rezvani, R. Pakizevand, Int. Nano Lett. 2011, 1, 75.
| 1:CAS:528:DC%2BC3MXpvVOjs74%3D&md5=6cd4fbd26e2a5836346f012369c39bceCAS |
[64] J. L. van Heerden, R. Swanepoel, Thin Solid Films 1997, 299, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVGhsbY%3D&md5=5c70a8d1ac506c17b963bce172f68b72CAS |
[65] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, C. H. Liang, J. Cryst. Growth 2002, 234, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFeqtbo%3D&md5=c863e98a99fbb78df3c0f72e6e503a5dCAS |
[66] E. Vasile, R. Plugaru, S. Mihaiu, A. Toader, Rom. J. Inf. Sci. Tech. 2011, 14, 346.
[67] M. E. Fragala, G. Malandrino, Microelectron. J. 2009, 40, 381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ggurc%3D&md5=0b00dd241078782a41d6b52910403d06CAS |
[68] J. F. Chang, M. H. Hon, Thin Solid Films 2001, 386, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVWqu70%3D&md5=aa6f93ff33a22aba64d12ecad927d261CAS |
[69] N. Tsao, T. Y. Luh, C. K. Chou, T. Y. Chang, J. J. Wu, C. C. Liu, J. Antimicrob. Chemother. 2002, 49, 641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFynurs%3D&md5=114267b3a0db6ffbf249089c0b4f0915CAS | 11909838PubMed |
[70] K. H. Tam, A. B. Djurisic, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung, D. W. T. Au, Thin Solid Films 2008, 516, 6167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCls7o%3D&md5=abea64364f31cc39275cec216a8aa6b8CAS |
[71] J. Sawai, I. Saito, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, J. Chem. Eng. Jpn. 1995, 28, 352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFynsbs%3D&md5=6220c5cfe9f066051026f4597605f797CAS |
[72] J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, A. Takehara, J. Chem. Eng. Jpn. 1997, 30, 1034.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislSlsQ%3D%3D&md5=f204d72904ebccfc66391cffad7cf997CAS |
[73] S. Nair, A. Sasidharan, V. V. D. Rani, D. Menon, S. Nair, K. Manzoor, J. Mater. Sci. Mater. Med. 2009, 20, 235.
| Crossref | GoogleScholarGoogle Scholar |
[74] L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, J. Nanopart. Res. 2010, 12, 1625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFOrtLs%3D&md5=fe98fb2561c09d99f71d75f29f3e428fCAS |
[75] J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, J. Ferment. Bioeng. 1998, 86, 521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVOhtb8%3D&md5=3f185ed8434fd563bc088b9967d0f544CAS |
[76] O. Yamamoto, M. Komatsu, J. Sawa, Z. E. Nakagawa, J. Mater. Sci. Mater. Med. 2004, 15, 847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVCgur4%3D&md5=8bb6763dd9942b3a96aff7545848ad7dCAS | 15477735PubMed |
[77] A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, J. Phys. Chem. C 2009, 113, 15997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslOlsrc%3D&md5=c0ae962054bbacb62c3d19d6a2f21ee3CAS |
[78] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Biomaterials 2002, 23, 887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFKmsb0%3D&md5=0ca23c10f9fc6fe0e33d240222a84a2dCAS | 11771707PubMed |
[79] P. Dallas, V. K. Sharma, R. Zboril, Adv. Colloid Interface Sci. 2011, 166, 119.
| 1:CAS:528:DC%2BC3MXotlCntbs%3D&md5=7f218478533bb9f3860d18afdbb11060CAS | 21683320PubMed |
[80] C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environ. Sci. Technol. 2012, 46, 6900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=b7c8d33e9ca68f55acde20ce8914525dCAS | 22339502PubMed |
[81] C. M. Rico, S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, J. L. Gardea-Torresdey, J. Agric. Food Chem. 2011, 59, 3485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtV2lsr4%3D&md5=dbca74c63288fc319e4779bcfcc4d4efCAS | 21405020PubMed |
[82] J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, J. L. Gardea-Torresdey, J. Hazard. Mater. 2011, 186, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFart7o%3D&md5=1c3c8d4450086e9aeebd0af259f2f03cCAS | 21134718PubMed |
[83] M. K. Rai, S. D. Deshmukh, A. P. Ingle, A. K. Gade, J. Appl. Microbiol. 2012, 112, 841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns12mu7s%3D&md5=2b4b3f42dbdb4b8089c59542b6070886CAS | 22324439PubMed |
[84] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, Nanotechnology 2005, 16, 2346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CiurjJ&md5=490fcd672465608161bc75e682eb5efaCAS | 20818017PubMed |
[85] R. Kumar, S. Howdle, H. Munstedt, J. Biomed. Mater. Res. B. 2005, 75B, 311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CgtbrJ&md5=69241c8c49aac1a97a0cccc43c67f653CAS |
[86] U. Klueh, V. Wagner, S. Kelly, A. Johnson, J. D. Bryers, J. Biomed. Mater. Res. 2000, 53, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVWisb8%3D&md5=2e5cbbf6cbfc36ab03e754cec40b5fa2CAS | 11074419PubMed |
[87] S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, A. D. Russell, Lett. Appl. Microbiol. 1997, 25, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFCktb0%3D&md5=e948a455d9d407d1f98443c86c1b9476CAS | 9351278PubMed |
[88] S. A. Kumar, M. K. Abyaneh, S. W. Gosavi, S. K. Kulkarni, R. Pasricha, A. Ahmad, Biotechnol. Lett. 2007, 29, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVehtrk%3D&md5=af73f5aca015ac6e035db048db1867bdCAS |
[89] R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, J. Biol. Chem. 2003, 278, 40917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFWgtr0%3D&md5=477796dd37eb5581c4b69a07565408feCAS | 12851407PubMed |
[90] R. Lavi, A. Shainberg, V. Shneyvays, E. Hochauser, A. Isaac, T. Zinman, Lasers Surg. Med. 2010, 42, 473.
| Crossref | GoogleScholarGoogle Scholar | 20662023PubMed |
[91] R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, R. Lubart, Lasers Surg. Med. 2010, 42, 348.
| Crossref | GoogleScholarGoogle Scholar | 19790248PubMed |
[92] S. V. Gudkov, O. E. Karp, S. A. Garmash, V. E. Ivanov, A. V. Chernikov, A. A. Manokhin, Biofizika 2012, 57, 5.
| 1:STN:280:DC%2BC38nhsVWhtQ%3D%3D&md5=6c985ea3b2f43997ebda473e7f8369deCAS | 22567905PubMed |
[93] R. Lubart, R. Lavie, H. Friedmann, M. Sinyakov, A. Shainberg, H. Breitbart, N. Grossman, in Effects of Low-Power Light on Biological Systems V (Eds T. I. Karu, R. Lubart) 2000, Proceedings of SPIE Vol. 4159, pp. 18–24.
[94] R. G. Pearson, J. Chem. Educ. 1968, 45, 581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXltVShs74%3D&md5=d065087a825773baba447b7cac2a5274CAS |
[95] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksV0%3D&md5=f5f4ee18821760fe4451aad744bff2a6CAS |
[96] H. Jang, L. E. Pell, B. A. Korgel, D. S. English, J. Photochem. Photobiol. Chem. 2003, 158, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1elsbk%3D&md5=3c84c275645ccec793b7f0a611434f74CAS |
[97] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Z. Sun, J. Proteome Res. 2006, 5, 916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlSktb8%3D&md5=3c4e48e2005d0364cc15d9885a9c101dCAS | 16602699PubMed |
[98] S. Pal, Y. K. Tak, J. M. Song, Appl. Environ. Microbiol. 2007, 73, 1712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ahtrk%3D&md5=7c4c61ca1ad0e8ddc661ed46d4f6f715CAS | 17261510PubMed |
[99] S. K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, A. Chattopadhyay, Langmuir 2006, 22, 9322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVajtrfF&md5=2eb48df69e1c7514143d8821541d2846CAS | 17042548PubMed |
[100] B. Wu, R. Huang, M. Sahu, X. Y. Feng, P. Biswas, Y. J. Tang, Sci. Total Environ. 2010, 408, 1755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKisL4%3D&md5=81fc2dfc5dd32bf753461e3dcfd7390dCAS | 19931887PubMed |
[101] A. Bokare, A. Sanap, M. Pai, S. Sabharwal, A. A. Athawale, Colloid. Surface. B. 2013, 102, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlt7vF&md5=a95c3e29f70ae4ae3e863fd5360eed70CAS |