Synthesis of Heterocyclic-fused Imidazoles by Pyrolysis of N-Heterocyclic Isoxazol-5(2H)-ones
Steven-Alan G. Abel A , Mathew O. Eglinton A , James K. Howard A , Dylan J. Hunt A , Rolf H. Prager B and Jason A. Smith A CA School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia
B School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5001, Australia
C Corresponding author. Email: Jason.Smith@utas.edu.au
Australian Journal of Chemistry 67(9) 1228-1233 https://doi.org/10.1071/CH14119
Submitted: 6 March 2014 Accepted: 28 March 2014 Published: 19 May 2014
Abstract
The synthesis of heterocyclic-fused imidazoles was achieved by flash vacuum pyrolysis (FVP) of N-heterocyclic isoxazol-5(2H)-ones via an iminocarbene intermediate. Unlike iminocarbenes generated from triazoles, no structural rearrangements were observed during the current synthesis method. We also demonstrated that less volatile isoxazol-5(2H)-one derivatives yield the corresponding imidazoles by condensed phase pyrolysis.
References
[1] M. H. Fisher, A. Lusi, J. Med. Chem. 1972, 15, 982.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsVOlt7Y%3D&md5=b7acfa6c2f9ae97f8db3d140ddc17e3dCAS | 5065787PubMed |
[2] Y. Rival, G. Grassy, A. Taudou, R. Ecalle, Eur. J. Med. Chem. 1991, 26, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVCitr0%3D&md5=7ae39a4f7e7150c5ccd27ad9d5c0c26fCAS |
[3] A. Kamal, J. S. Reddy, M. J. Ramaiah, D. Dastagiri, E. V. Bharathi, M. V. P. Sagar, S. N. C. V. L. Pushpavalli, P. Ray, M. Pal-Bhadra, Chem Med Commun 2010, 1, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeku7%2FL&md5=f7b1373fbea2326b2d13a0870765c045CAS |
[4] C. Hamdouchi, J. de Blas, M. del Prado, J. Gruber, B. A. Heinz, L. Vance, J. Med. Chem. 1999, 42, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVOmsb0%3D&md5=6517ec31e7fdcb2d07105a123789bea8CAS | 9888832PubMed |
[5] L. Almirante, L. Polo, A. Mugnaini, E. Proviinciali, P. Rugarli, A. Biancotti, A. Gamba, W. Murmann, J. Med. Chem. 1965, 8, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXptVyrtg%3D%3D&md5=6599af430f06a6466221d10c056e3e41CAS | 14329509PubMed |
[6] D. Belohlavek, P. Malfertheiner, K. Kunzi, G. Gebert, Drugs Exp. Clin. Res. 1979, 5, 177.
| 1:CAS:528:DyaL3cXlt1Wksg%3D%3D&md5=3898e39ee12dbf955e71c4880df14d15CAS |
[7] T. Swainston Harrison, G. M. Keating, CNS Drugs 2005, 19, 65.
| Crossref | GoogleScholarGoogle Scholar | 15651908PubMed |
[8] A. Berson, V. Descatoire, A. Sutton, D. Fau, B. Maulny, N. Vardot, G. Fledmann, B. Berthon, T. Tordjmann, D. Pessayre, J. Pharmacol. Exp. Ther. 2001, 299, 793.
| 1:CAS:528:DC%2BD3MXnvV2qtb0%3D&md5=2d65e674015ce4885c4b981427839c68CAS | 11602696PubMed |
[9] J. Niziol, W. Baran, E. Gondek, I. V. Kityk, A. Mendys, M. Zylewski, A. H. Reshak, Chem. Eng. Commun. 2009, 196, 1466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ntLfO&md5=04abd0307abcb8b5b4313be67e6be6b0CAS |
[10] M. Aginagalde, Y. Vara, A. Arrieta, R. Zangi, V. L. Cebolla, A. Delgado-Camón, F. P. Cossío, J. Org. Chem. 2010, 75, 2776..
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVeis7nJ&md5=761809528264110382a16d1d62040991CAS | 19921806PubMed |
[11] (a) J. Z. Zeng, Y. J. Tan, M. L. Leow, X.-W. Liu, Org. Lett. 2012, 14, 4386.
| 1:CAS:528:DC%2BC38XhtFOisr%2FN&md5=dfa8a36db1d36cb9868a2bfff1157dfaCAS |
(b) A. Kumar, M. Rahman, S. Santra, A. Majee, A. Hajram, Adv. Synth. Catal. 2013, 355, 1741.
(c) D. S. Ermolat’ev, V. N. Gimenez, E. V. Babaev, E. Van der Eycken, J. Comb. Chem. 2006, 8, 659.
[12] G. Cooper, W. J. Irwin, J. Chem. Soc. Perkins Trans. 1 1976, 1, 75.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Huang, X. Ji, X. Tang, M. Zhang, X. Li, H. Jiang, Org. Lett. 2013, 15, 6254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVajtbfN&md5=4fe463717def75f54f564549e5b97b5bCAS | 24261576PubMed |
[14] Y. Singh, R. H. Prager, Aust. J. Chem. 1992, 45, 1811.
| 1:CAS:528:DyaK3sXht1CnsLY%3D&md5=0edf1ace929cc76e84d3e5d400650f00CAS |
[15] R. H. Prager, Y. Singh, B. Weber, Aust. J. Chem. 1994, 47, 1249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlCjsrY%3D&md5=447e96990b1151065b60ba5fdd49d029CAS |
[16] K. H. Ang, M. Cox, W. D. Lawrance, R. Prager, J. A. Smith, W. Staker, Aust. J. Chem. 2004, 57, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsV2n&md5=ea20424c8272929c1b66659d47000081CAS |
[17] G. Mitchell, C. W. Rees, J. Chem. Soc. Perkin Trans. 1 1987, 413.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. H. Prager, J. A. Smith, E. R. T. Tiekink, Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, o451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFeitrY%3D&md5=64f4e812e8864666a118f32970fef5eaCAS |
[19] D. Lecoq, B. A. Chalmers, R. N. Veedu, D. Kvaskoff, P. V. Bernhardt, C. Wentrup, Aust. J. Chem. 2009, 62, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFentrfP&md5=3e75528daf6047c6157c9c84b058b0c4CAS |
[20] (a) G. Adembri, P. Tedeschi, Boll. Sci. Fac. Chim. Ind. Bologna 1965, 23, 203.
| 1:CAS:528:DyaF2MXkslWqsLo%3D&md5=779f616859340ab24c1857d2796ca847CAS |
(b) G. Adembri, P. Tedeschi, Chem. Abstr. 1965, 63, 13234h.
[21] R. Breslow, T. Eicher, A. Krebs, R. A. Peterson, J. Posner, J. Am. Chem. Soc. 1965, 87, 1320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXntl2hsA%3D%3D&md5=c1a95c3f20b08c5382de5751fc565bbcCAS |
[22] J. Parrick, R. Willcox, J. Chem. Soc. Perkin Trans. 1 1976, 2121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXnt1CrtA%3D%3D&md5=96dc9c3fc6f0a3bdcbf03a75c93926e5CAS |