A Critical Investigation on the Existence of Selective Microwave Absorption in the Synthesis of CdSe Quantum Dots
Mojtaba Mirhosseini Moghaddam A and C. Oliver Kappe A BA Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
B Corresponding author. Email: oliver.kappe@uni-graz.at
Australian Journal of Chemistry 67(9) 1180-1188 https://doi.org/10.1071/CH14071
Submitted: 10 January 2014 Accepted: 19 February 2014 Published: 10 April 2014
Abstract
The existence of selective microwave absorption phenomena in the synthesis of CdSe quantum dots has been investigated. These types of microwave effects involving selective microwave absorption by specific reagents have recently been proposed in the microwave-assisted synthesis of various nanoparticles. In the present study, the microwave synthesis of CdSe quantum dots was investigated according to a protocol published by Washington and Strouse to clarify the presence of selective microwave heating. Importantly, control experiments involving conventional conductive heating were executed under otherwise (except for the heating mode) identical conditions, ensuring the same heating and cooling profiles, stirring rates, and reactor geometries. Comparison of powder X-ray diffraction, UV-vis, photoluminescence, and transmission electron microscopy data of the obtained CdSe quantum dots reveals that identical types of nanoparticles are obtained independently of the heating mode. Therefore, no evidence for a selective microwave absorption phenomenon could be obtained.
References
[1] (a) For recent books, see: A. De La Hoz, A. Loupy (Eds), Microwaves in Organic Synthesis, 3rd edn 2013 (Wiley-VCH: Weinheim).(b) C. O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry, 2nd edn 2012 (Wiley-VCH: Weinheim).
(c) N. E. Leadbeater (Ed.), Microwave Heating as a Tool for Sustainable Chemistry 2011 (CRC Press: Boca Raton, FL).
[2] (a) For selected recent reviews covering different fields of microwave chemistry: S. L. Pedersen, A. P. Tofteng, L. Malik, K. J. Jensen, Chem. Soc. Rev. 2012, 41, 1826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFyjsrk%3D&md5=a4fb93037b83954cde1b1364ad7ce719CAS | 22012213PubMed |
(b) M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, C. O. Kappe, Angew. Chem. Int. Ed. 2011, 50, 11312.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Kempe, C. R. Becer, U. S. Schubert, Macromolecules 2011, 44, 5825.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Klinowski, F. A. A. Paz, P. Silva, J. Rocha, Dalton Trans. 2011, 321.
| Crossref | GoogleScholarGoogle Scholar |
[3] For a recent definition and discussion of microwave effects, see: C. O. Kappe, B. Pieber, D. Dallinger, Angew. Chem. Int. Ed. 2013, 52, 1088.and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSlsbzP&md5=42f6803e663aea55e7d04192be24c308CAS |
[4] (a) For debate on this controversial topic, see: S. K. Ritter, Chem. Eng. News 2014, 92, 26.
(b) G. B. Dudley, A. E. Stiegman, M. R. Rosana, Angew. Chem. Int. Ed. 2013, 52, 7918.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. O. Kappe, Angew. Chem. Int. Ed. 2013, 52, 7924.
| Crossref | GoogleScholarGoogle Scholar |
[5] Temperature measurement under microwave conditions is a non-trivial affair and often leads to misinterpretations. For a recent review on this topic, see: C. O. Kappe, Chem. Soc. Rev. 2013, 42, 4977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ersbY%3D&md5=d774073c12c470abd55ecfc5d2ad21b6CAS | 23443140PubMed |
[6] (a) I. Bilecka, M. Niederberger, Nanoscale 2010, 2, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ms7%2FO&md5=a6796b6e51d0ab9ddbecbd2160421a45CAS | 20845524PubMed |
(b) M. N. Nadagouda, T. F. Speth, R. S. Varma, Acc. Chem. Res. 2011, 44, 469.
| Crossref | GoogleScholarGoogle Scholar |
[7] For an overview of commercially available microwave reactors, see: C. O. Kappe, A. Stadler, D. Dallinger, in Microwaves in Organic and Medicinal Chemistry, 2nd edn 2012, Ch. 3, pp. 41–81 (Wiley-VCH: Weinheim).
[8] L. Gou, M. Chipara, J. M. Zaleski, Chem. Mater. 2007, 19, 1755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12lt7w%3D&md5=69e84ae7b7912a28db08ba599abebba4CAS |
[9] S. Horikoshi, H. Abe, K. Torigoe, M. Abe, N. Serpone, Nanoscale 2010, 2, 1441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ms7zI&md5=06327353ef093b52595a5624d3cc2a19CAS | 20820732PubMed |
[10] (a) A. L. Washington, G. F. Strouse, Chem. Mater. 2009, 21, 3586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlOmur4%3D&md5=6e2e04b8aa2a897f02da53171befa96aCAS |
(b) T. Druzhinina, W. Weltjens, S. Hoeppener, U. S. Schubert, Adv. Funct. Mater. 2009, 19, 1287.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Gui, K. Wang, A. Cao, J. Wei, R. Lv, F. Kang, Q. Shu, Y. Jia, D. Wu, J. Nanosci. Nanotechnol. 2010, 10, 1808.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Abel, K. Aslan, Ann. Phys. 2012, 524, 741.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. D. Lovingood, J. R. Owens, M. Seeber, K. G. Kornev, I. Luzinov, ACS Appl. Mater. Interfaces 2012, 4, 6875.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Muthuswamy, A. S. Iskandar, M. M. Amador, S. M. Kauzlarich, Chem. Mater. 2013, 25, 1416.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. L. Washington, G. F. Strouse, Chem. Mater. 2009, 21, 2770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlKjsb0%3D&md5=1a19fd759334ee060a59db6943c32736CAS |
[12] X. Hu, J. C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater. 2007, 19, 2324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSktrfL&md5=80791f5b720e86e70dd02b3695791096CAS |
[13] I. Bilecka, I. Djerdj, M. Niederberger, Chem. Commun. 2008, 886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymtLg%3D&md5=fe3725d9cdee1005fe5c21f2f1bdec19CAS |
[14] M. Godinho, R. D. Goncalves, E. R. Leite, C. W. Raubach, N. L. V. Carreno, L. F. D. Probst, E. Longo, H. V. Fajardo, J. Mater. Sci. 2010, 45, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKjtQ%3D%3D&md5=2748d28d5f725ae78e4093eabc6417a6CAS |
[15] S. Horikoshi, H. Abe, T. Sumi, K. Torigoe, H. Sakai, N. Serpone, M. Abe, Nanoscale 2011, 3, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2rsb4%3D&md5=1c76d8e018df947b3d88cac5ea7c7d68CAS | 21321756PubMed |
[16] (a) J. A. Gerbec, D. Magana, A. L. Washington, J. Am. Chem. Soc. 2005, 127, 15791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWku7fE&md5=7aef34f3d82d6b8c988cacff90267278CAS | 16277522PubMed |
(b) A. L. Washington, G. F. Strouse, J. Am. Chem. Soc. 2008, 130, 8916.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem. Int. Ed. 2009, 48, 8321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12htb%2FE&md5=f1da8964d3287d42d813a081ca7a94f8CAS |
(b) B. Gutmann, D. Obermayer, B. Reichart, B. Prekodravac, M. Irfan, J. M. Kremsner, C. O. Kappe, Chem. Eur. J. 2010, 16, 12182.
| Crossref | GoogleScholarGoogle Scholar |
[18] For a review of SiC vessel technology, see: C. O. Kappe, Acc. Chem. Res. 2013, 46, 1579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFejtb8%3D&md5=e2861956e78bd5cb5a02c5f37d402d89CAS | 23463987PubMed |
[19] (a) For applications of SiC technology to nanomaterials synthesis, see: A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier, H. Amenitsch, F. Hofer, C. O. Kappe, G. Trimmel, Inorg. Chem. 2011, 50, 193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFakurrL&md5=c4797838f8db5498ae92851633683cefCAS | 21141832PubMed |
(b) M. Baghbanzadeh, S. D. Škapin, Z. C. Orel, C. O. Kappe, Chem. Eur. J. 2012, 18, 5724.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Mirhosseini Moghaddam, M. Baghbanzadeh, A. Keilbach, C. O. Kappe, Nanoscale 2012, 4, 7435.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. M. Balu, D. Dallinger, D. Obermayer, J. M. Campelo, A. A. Romero, D. Carmona, F. Balas, J. Santamaria, K. Yohida, P. L. Gai, C. Vargas, C. O. Kappe, R. Luque, Green Chem. 2012, 14, 393.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. Breitwieser, M. Mirhosseini Moghaddam, S. Spirk, M. Baghbanzadeh, T. Pivec, H. Fasl, V. Ribitsch, C. O. Kappe, Carbohydr. Polym. 2013, 94, 677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1ehu7w%3D&md5=1786242445f65fa3f4e7eff40b7d0c9bCAS | 23544590PubMed |
[21] (a) T. Razzaq, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 6321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOmtrw%3D&md5=edff981548601af792f8c16bf89c2daaCAS | 18613726PubMed |
(b) T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. Eur. J. 2009, 15, 1001.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Irfan, M. Fuchs, T. N. Glasnov, C. O. Kappe, Chem. Eur. J. 2009, 15, 11608.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) An exception is the use of millimetre-sized zerovalent metals suspended in a weakly microwave-absorbing organic solvent. In agreement with previously published reports, we were able to corroborate the existence of a distinct specific microwave effect, where with a dependence on the electromagnetic field strength, the insertion of Mg metal into a C–Cl bond was accelerated in a low-density microwave field, or suppressed by applying a high-density field, independently of the bulk reaction temperature. This particular effect is directly linked to the exceedingly high local temperatures generated by arcing phenomena on the metal surface, and thus ultimately also the result of a relatively easy to rationalise thermal phenomenon. For more information, see: B. Gutmann, A. M. Schwan, B. Reichart, C. Gspan, F. Hofer, C. O. Kappe, Angew. Chem. Int. Ed. 2011, 50, 7636.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1ehurc%3D&md5=00c775b6d5e95528b82c9f23c8eae9cdCAS |
(b) W. Chen, B. Gutmann, C. O. Kappe, ChemistryOpen 2012, 1, 39.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Dallinger, M. Irfan, A. Suljanovic, C. O. Kappe, J. Org. Chem. 2010, 75, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVChsbY%3D&md5=69d6625cf432e028f4ab772b0939a166CAS | 20670032PubMed |
[24] A. T. R. Williams, S. A. Winfield, J. N. Miller, Analyst 1983, 108, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXislKquw%3D%3D&md5=49424bf8a698fa7ef984586f8d4f4a8fCAS |
[25] D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurfK&md5=49ff483a71ccc414de86464e46f9bd54CAS | 20024141PubMed |
[26] S. Hayden, M. Damm, C. O. Kappe, Macromol. Chem. Phys. 2013, 214, 423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejtL3I&md5=7ed959571737850d2eebe8c244204b18CAS |