Guanidine Motif in Biologically Active Peptides
Juan V. Alegre-Requena A , Eugenia Marqués-López A and Raquel P. Herrera A BA Laboratorio de Síntesis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza. E-50009 Zaragoza, Spain.
B Corresponding author. Email: raquelph@unizar.es
Australian Journal of Chemistry 67(7) 965-971 https://doi.org/10.1071/CH14043
Submitted: 29 January 2014 Accepted: 21 March 2014 Published: 19 May 2014
Abstract
In the past decade, guanidines have attracted attention as valuable hydrogen bond-based catalysts while they have long been considered as organic superbases with a broad scope of synthetic applicability. Their easy modification has also expanded their capacity to form complexes with a wide range of metal salts as effective metal scavengers. All these attractive aspects have promoted a huge growth in the field of organic synthesis involving guanidines and examples of such reactions have been collected in numerous reviews and some books. Moreover, this structural motif is also present in a large number of natural products and biologically active compounds that exhibit appealing properties and play important roles in medicinal chemistry. In this highlight, we will only cover the synthesis and properties of biologically active guanidine-containing peptides reported in the past 3 years.
References
[1] (a) R. G. S. Berlinck, Fortschr. Chem. Org. Naturst. 1995, 66, 119.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1Oku7w%3D&md5=dcfc9b7dc991d915bf482f7fb197517fCAS |
(b) R. G. S. Berlinck, Nat. Prod. Rep. 1996, 13, 377.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. G. S. Berlinck, Nat. Prod. Rep. 1999, 16, 339.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Heys, C. G. Moore, P. J. Murphy, Chem. Soc. Rev. 2000, 29, 57.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. G. S. Berlinck, Nat. Prod. Rep. 2002, 19, 617.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. G. S. Berlinck, M. H. Kossuga, Nat. Prod. Rep. 2005, 22, 516.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. G. S. Berlinck, A. C. B. Burtoloso, M. H. Kossuga, Nat. Prod. Rep. 2008, 25, 919.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. G. S. Berlinck, A. E. Trindade-Silva, M. F. C. Santos, Nat. Prod. Rep. 2012, 29, 1382.
| Crossref | GoogleScholarGoogle Scholar |
(i) K. E. S. Locock, T. D. Michl, J. D. P. Valentin, K. Vasilev, J. D. Hayball, Y. Qu, A. Traven, H. J. Griesser, L. Meagher, M. Haeussler, Biomacromolecules 2013, 14, 4021.and references cited therein
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. R. Katritzky, S. R. Tala, A. Singh, ARKIVOC 2010, 2010, 76.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. R. M. Rauws, B. U. W. Maes, Chem. Soc. Rev. 2012, 41, 2463.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) T. Ishikawa, T. Kumamoto, Synthesis 2006, 737.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Ishikawa, (Ed.) in Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts 2009 (John Wiley & Sons Ltd: Chichester, UK).
(c) T. Ishikawa, Chem. Pharm. Bull. 2010, 58, 1555.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) For selected recent reviews, see: M. P. Coles, Chem. Commun. 2009, 3659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslentLw%3D&md5=0bef196c004b3565f30822ca276ed1f9CAS |
(b) D. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Terada, J. Synth. Org. Chem. Jpn. 2010, 68, 1159.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Leow, C.-H. Tan, Synlett 2010, 1589.
(e) J. E. Taylor, S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. Selig, Synthesis 2013, 703.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) For some selected examples, see: N. Umezawa, M. A. Gelman, M. C. Haigis, R. T. Raines, S. H. Gellman, J. Am. Chem. Soc. 2002, 124, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFyjt70%3D&md5=2360f18dedf9fce7461c5b0d4dc91218CAS | 11792194PubMed |
(b) J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, P. A. Wender, J. Am. Chem. Soc. 2004, 126, 9506.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Pantos, I. Tsogas, C. M. Paleos, Biochim. Biophys. Acta 2008, 1778, 811.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. D. Sajjad, Y. Hong, F. Liu, Polym. Adv. Technol. 2014, 25, 108.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) G. J. Gabriel, A. E. Madkour, J. M. Dabkowski, C. F. Nelson, K. Nüsslein, G. N. Tew, Biomacromolecules 2008, 9, 2980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Cis77L&md5=c1119e590196e4d5dd20f28c027f9063CAS | 18850741PubMed |
(b) A. Som, A. O. Tezgel, G. J. Gabriel, G. N. Tew, Angew. Chem. Int. Ed. 2011, 50, 6147.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Belorgey, J. A. Irving, U. I. Ekeowa, J. Freeke, B. D. Roussel, E. Miranda, J. Pérez, C. V. Robinson, S. J. Marciniak, D. C. Crowther, C. H. Michel, D. A. Lomas, Methods 2011, 53, 255.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. J. Treat, D. Smith, C. Teng, J. D. Flores, B. A. Abel, A. W. York, F. Huang, C. L. McCormick, ACS Macro Lett. 2012, 1, 100.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. L. Bennett, G. P. Black, P. Browne, A. Hizi, M. Jaffar, J. P. Leyland, C. Martin, I. Oz-Gleenberg, P. J. Murphy, T. D. Roberts, A. J. Thornhill, S. A. Vale, Tetrahedron 2013, 69, 3061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1Siu7Y%3D&md5=ab2112a35a73b61b36bd50a9f26381aaCAS |
[8] T. C. Holmes, A. E. May, K. Zaleta-Rivera, J. G. Ruby, P. Skewes-Cox, M. A. Fischbach, J. L. DeRisi, M. Iwatsuki, S. Ōmura, C. Khosla, J. Am. Chem. Soc. 2012, 134, 17797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGqtLbE&md5=8b9954cfb14f7e4ff829d9f689192014CAS | 23030602PubMed |
[9] M. von Itzstein, W.-Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. V. Phan, M. L. Smythe, H. F. White, S. W. Oliver, P. M. Colman, J. N. Varghese, D. M. Ryan, J. M. Woods, R. C. Bethell, V. J. Hotham, J. M. Cameron, C. R. Penn, Nature 1993, 363, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVGntb0%3D&md5=468d13161ba7aafc2b21150ffab0a2cbCAS | 8502295PubMed |
[10] C. Balraj, A. Satheshkumar, K. Ganesh, E. H. El-Mossalamy, K. P. Elango, J. Mol. Struct. 2013, 1050, 166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCmsr%2FL&md5=02aa79244e0c52a9c291e2acfec87becCAS |
[11] C. Nofre, D. Glaser, J.-M. Tinti, M. Wanner, J. Anim. Physiol. Anim. Nutr. 2002, 86, 90.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWitro%3D&md5=9c140e9dd6cd40ff79552dd9ace79d68CAS |
[12] (a) For some selected examples, see: Y. Su, T. Doherty, A. J. Waring, P. Ruchala, M. Hong, Biochemistry 2009, 48, 4587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFKrs7k%3D&md5=2e18e8cdfdbbe3b470e2455e44936b99CAS | 19364134PubMed |
(b) N. W. Schmidt, A. Mishra, G. H. Lai, M. Davis, L. K. Sanders, D. Tran, A. Garcia, K. P. Tai, P. B. McCray, A. J. Ouellette, M. E. Selsted, G. C. L. Wong, J. Am. Chem. Soc. 2011, 133, 6720.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. S. Nagle, F. Rodriguez, B. Nguyen, W. D. Wilson, I. Rozas, J. Med. Chem. 2012, 55, 4397.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Zhang, L. Han, C.-g. Li, J. Wang, W. Wang, Z. Yuan, X. Gao, Tetrahedron 2012, 68, 2357.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Sgolastra, B. M. Deronde, J. M. Sarapas, A. Som, G. N. Tew, Acc. Chem. Res. 2013, 46, 2977.
| Crossref | GoogleScholarGoogle Scholar |
[13] T. Suhs, B. König, Mini Rev. Org. Chem. 2006, 3, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFemsb%2FJ&md5=09c354309133893630c4a135becf30e2CAS |
[14] (a) For some selected works, see: K. S. Kim, L. Qian, Tetrahedron Lett. 1993, 34, 7677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlehtL8%3D&md5=989b03d1476ce865dba846d334402c64CAS |
(b) C. Levallet, J. Lerpiniere, S. Y. Ko, Tetrahedron 1997, 53, 5291.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Cunha, M. B. Costa, H. B. Napolitano, C. Lariucci, I. Vencato, Tetrahedron 2001, 57, 1671.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Yu, J. M. Ostresh, R. A. Houghten, J. Org. Chem. 2002, 67, 3138.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) R. J. Bergeron, J. S. McManis, J. Org. Chem. 1987, 52, 1700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvFKlt74%3D&md5=ae231ee9befb6abe6e5142e67d6cd598CAS |
(b) H.-O. Kim, F. Mathew, C. Ogbu, Synlett 1999, 193.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Moroni, B. Koksch, S. N. Osipov, M. Crucianelli, M. Frigerio, P. Bravo, K. Burger, J. Org. Chem. 2001, 66, 130.
| Crossref | GoogleScholarGoogle Scholar |
[16] T. M. Lakowski, P. Hart, C. A. Ahern, N. I. Martin, A. Frankel, ACS Chem. Biol. 2010, 5, 1053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrsL3L&md5=f242b8164f642174710c95608d577b48CAS | 20701328PubMed |
[17] S. Weiss, M. Keller, G. Bernhardt, A. Buschauer, B. König, Bioorg. Med. Chem. 2010, 18, 6292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKgsLbK&md5=5365151f77bf49bd725dfb8327ad0dd3CAS | 20688523PubMed |
[18] B. A. Aleiwi, C. M. Schneider, M. Kurosu, J. Org. Chem. 2012, 77, 3859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWnu7c%3D&md5=280dc168be72cff14a672d735386f22bCAS | 22458337PubMed |
[19] (a) Y. Touati-Jallabe, L. Chiche, A. Hamzé, A. Aumelas, V. Lisowski, D. Berthomieu, J. Martinez, J.-F. Hernandez, Chem. Eur. J. 2011, 17, 2566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFajt74%3D&md5=00706bfbbed2ef695c6192c2a3cdbc17CAS | 21294201PubMed |
(b) Y. Touati-Jallabe, E. Bojnik, B. Legrand, E. Mauchauffée, N. N. Chung, P. W. Schiller, S. Benyhe, M.-C. Averlant-Petit, J. Martinez, J.-F. Hernandez, J. Med. Chem. 2013, 56, 5964.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) For some previous works, see: M. S. Bernatowicz, Y. Wu, G. R. Matsueda, J. Org. Chem. 1992, 57, 2497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslCksbw%3D&md5=107e2c4dc760a0b15e339c62519d19f0CAS |
(b) M. S. Bernatowicz, Y. Wu, G. R. Matsueda, Tetrahedron Lett. 1993, 34, 3389.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Drake, M. Patek, M. Lebl, Synthesis 1994, 579.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Wu, G. R. Matsueda, M. S. Bernatowicz, Synth. Commun. 1993, 23, 3055.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. K. Ghosh, W. G. Hol, E. Fan, J. Org. Chem. 2001, 66, 2161.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. S. Gokhale, V. A. Kumar, Org. Biomol. Chem. 2010, 8, 3742.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFeqsLo%3D&md5=e9229789f56f9f6ddbd5311b57a69553CAS | 20539879PubMed |
[22] P. Garbati, A. Salis, E. Adriano, A. Galatini, G. Damonte, M. Balestrino, E. Millo, Amino Acids 2013, 45, 821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKks7jF&md5=0195ceceb4364d5bf2ded93a582f65e5CAS | 23744400PubMed |
[23] M. Nanda, K. N. Ganesh, J. Org. Chem. 2012, 77, 4131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFeltbo%3D&md5=e7c179855e3a48cee9e390d48b8f4f77CAS | 22428628PubMed |
[24] (a) For some selected works, see: K. Feichtinger, C. Zapf, H. L. Sings, M. Goodman, J. Org. Chem. 1998, 63, 3804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Ggt7g%3D&md5=b0fe4e76cb0bf0822f3754d0b8996decCAS |
(b) M. Tamaki, G. Han, V. J. Hruby, J. Org. Chem. 2001, 66, 1038.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. P. Cheng, Y.-J. Weng, W.-R. Wang, M. J. Koyack, Y. Suzuki, C.-H. Wu, P.-A. Yang, H.-C. Hsu, H.-T. Kuo, P. Girinath, C.-J. Fang, Amino Acids 2012, 43, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlOhur4%3D&md5=59fbeacd2c805c141112fdb933bbdaffCAS | 21922267PubMed |
[26] C. S. Schindler, L. Bertschi, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 9229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsb7I&md5=4832a03f8bbab22f41079997ee9ef994CAS |
[27] (a) R. Chinchilla, C. Najera, P. Sanchez-Agullo, Tetrahedron: Asymmetry 1994, 5, 1393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlSgsrk%3D&md5=7007a5deee96fe7bc972d3131e355a27CAS |
(b) T. Isobe, K. Fukuda, K. Yamaguchi, H. Seki, T. Tokunaga, T. Ishikawa, J. Org. Chem. 2000, 65, 7779.
| Crossref | GoogleScholarGoogle Scholar |
[28] (a) For some pioneering works, see: J. R. Kimmel, Methods Enzymol. 1967, 11, 584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXmsVansg%3D%3D&md5=5ce45f55fc07b4f2ec84dfcd8664f47aCAS |
(b) J. F. Callahan, D. Ashton-Shue, H. G. Bryan, W. M. Bryan, G. D. Heckman, L. B. Kinter, J. E. McDonald, M. L. Moore, D. B. Schmidt, J. S. Silvestri, F. L. Stassen, L. Sulat, N. C. F. Yim, W. F. Huffman, J. Med. Chem. 1989, 32, 391.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. dal Pozzo, L. Muzi, M. Moroni, R. Rondanin, R. de Castiglione, P. Bravo, M. Zanda, Tetrahedron 1998, 54, 6019.
| Crossref | GoogleScholarGoogle Scholar |
[29] For the pioneering work, see: H.-J. Musiol, L. Moroder, Org. Lett. 2001, 3, 3859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFaksL4%3D&md5=efbcb7db5881be2d3dfb5d4e62ada9f1CAS | 11720554PubMed |
[30] C.-H. Chen, C.-L. Tung, C.-M. Sun, Tetrahedron Lett. 2012, 53, 3959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslSrsbo%3D&md5=8a7a442b3880112136a8d1251646191aCAS |
[31] (a) A. Späth, B. König, Tetrahedron 2010, 66, 1859.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Späth, B. König, Tetrahedron 2010, 66, 6019.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. Grijalvo, M. Terrazas, A. Aviñó, R. Eritja, Bioorg. Med. Chem. Lett. 2010, 20, 2144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslGmtr4%3D&md5=682248833d339541747d9bd68b7895dbCAS | 20206515PubMed |
[33] S. Balakrishnan, M. J. Scheuermann, N. J. Zondlo, ChemBioChem 2012, 13, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oiur7K&md5=4deade1611f3d6d6343d883d4b4f5ba9CAS | 22213184PubMed |
[34] L. R. Malins, K. M. Cergol, R. J. Payne, ChemBioChem 2013, 14, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyms78%3D&md5=0f7412c29351b5d68f0a1d7b15f62a50CAS | 23426906PubMed |
[35] J. R. Cochrane, C. S. P. McErlean, K. A. Jolliffe, Org. Lett. 2010, 12, 3394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGgsro%3D&md5=8df8d9fbb0c820a4a03c8525ae50d7e6CAS | 20608662PubMed |
[36] A. Ganesan, Mini Rev. Med. Chem. 2006, 6, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlejsg%3D%3D&md5=42868f42679938f18753c09632fc4bb6CAS | 16457628PubMed |
[37] H. Y. Kuchelmeister, C. Schmuck, Chem. Eur. J. 2011, 17, 5311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvF2iur0%3D&md5=393e9c3b11e1797b2374a03972a9e837CAS | 21462273PubMed |
[38] (a) T. B. Potocky, J. Silvius, A. K. Menon, S. H. Gellman, ChemBioChem 2007, 8, 917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2ns74%3D&md5=e3a28b6ea7c80fefeee025bdb6ca7889CAS | 17503427PubMed |
(b) P. A. Wender, W. C. Galliher, E. A. Goun, L. R. Jones, T. H. Pillow, Adv. Drug Deliv. Rev. 2008, 60, 452.
| Crossref | GoogleScholarGoogle Scholar |
[39] Y. Kim, S. Binauld, M. H. Stenzel, Biomacromolecules 2012, 13, 3418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12ju7rM&md5=5007e215ea883ecffad235a2451c482cCAS | 22946476PubMed |
[40] G. Weltrowska, T. M.-D. Nguyen, N. N. Chung, B. C. Wilkes, P. W. Schiller, Bioorg. Med. Chem. Lett. 2013, 23, 5082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CkurfE&md5=bfe64108c6632d430cb089e22a4f35cbCAS | 23932788PubMed |
[41] (a) G. L. Becker, F. Sielaff, M. E. Than, I. Lindberg, S. Routhier, R. Day, Y. Lu, W. Garten, T. Steinmetzer, J. Med. Chem. 2010, 53, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WjsLzK&md5=74b36b803c0de7203a09d87e29aeb802CAS | 20038105PubMed |
(b) G. L. Becker, K. Hardes, T. Steinmetzer, Bioorg. Med. Chem. Lett. 2011, 21, 4695.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. Burov, M. Leko, M. Dorosh, A. Dobrodumova, O. Veselkina, J. Pept. Sci. 2011, 17, 620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVWjsLY%3D&md5=7ba1bc7990a5485a5b022b53a71eadaaCAS | 21644247PubMed |
[43] A. Caporale, I. Woznica, E. Schievano, S. Mammi, E. Peggion, Amino Acids 2010, 38, 1269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt12qsLY%3D&md5=949db3809a0bd1555bfa7a150e0dc6cbCAS | 19690796PubMed |
[44] (a) M. Shimizu, P. H. Carter, A. Khatri, J. T. Potts Jr, T. J. Gardella, Endocrinology 2001, 142, 3068.
| 1:CAS:528:DC%2BD3MXksleltrY%3D&md5=8917d782748124f95acf1d7fde399e59CAS | 11416029PubMed |
(b) N. Shimizu, J. Guo, T. J. Gardella, J. Biol. Chem. 2001, 276, 49003.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Shimizu, T. Dean, J. C. Tsang, A. Khatri, J. T. Potts Jr, T. J. Gardella, J. Biol. Chem. 2005, 280, 1797.
| Crossref | GoogleScholarGoogle Scholar |