Enzymatic Synthesis of p-Cresol Oligomers and Evaluation of their Free Radical Scavenging Activity
Lei Zhang A B , Ling-Yan Jiang C , Ke Zheng A , Hua Duan A , Min Li A and Yuan-Chen Cui A DA College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
B Institute of Chemistry and Biology, Henan University, Kaifeng 475004, China.
C Institute of Resources and Environment, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China.
D Corresponding author. Email: yuanchencui@126.com
Australian Journal of Chemistry 68(2) 282-287 https://doi.org/10.1071/CH13734
Submitted: 2 January 2014 Accepted: 28 April 2014 Published: 18 June 2014
Abstract
An environmentally benign aqueous micelle system was successfully used as reaction medium to perform enzymatic polymerization of p-cresol using horseradish peroxidase as catalyst. The polymerization maintains high yield over a wide pH range from 5 to 10. The resulting polymer is completely soluble in common solvent such as acetone, THF, DMF, and DMSO. Infrared spectroscopy analysis shows that polymer chains are composed of phenylene and oxyphenylene units. The formation of p-cresol polymer is according to a mechanism of free radical step polymerization. Because quinone structures are formed at the end of the molecular chain, p-cresol oligomers with an average degree of polymerization of less than 10 are obtained. p-Cresol oligomers possess several advantages such as simple synthetic route, good stability in air, and no significant smell. Importantly, the structure of p-cresol oligomers is similar to that of polyphenolic compounds in natural plants. As a result, p-cresol oligomers show good free radical scavenging activity and good prospects as novel antioxidant.
References
[1] H. Uyama, S. Kobayashi, J. Mol. Catal. B – Enzym. 2002, 19–20, 117.| Crossref | GoogleScholarGoogle Scholar |
[2] S. Kobayashi, H. Uyama, S. Kimura, Chem. Rev. 2001, 101, 3793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVOht7Y%3D&md5=d2e6dcd8974126b9ffbe06e27ca88d72CAS | 11740921PubMed |
[3] J. Puskas, M. Y. Sen, K. S. Seo, J. Polym. Sci. Pol. Chem. 2009, 47, 2959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvV2jsLc%3D&md5=51dd34721e803cfaba9a778b77f4b31eCAS |
[4] S. Kobayashi, A. Makino, Chem. Rev. 2009, 109, 5288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgsLbF&md5=7edb2b60079b48b35c0d37d4db419687CAS | 19824647PubMed |
[5] S. Kobayashi, K. Kashiwa, T. Kawasaki, S. Shoda, J. Am. Chem. Soc. 1991, 113, 3079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ShtLY%3D&md5=e9ab23e125342818fa454cc61a9bf2e6CAS |
[6] S. Egusa, T. Kitaoka, M. Goto, H. Wariishi, Angew. Chem. Int. Ed. 2007, 46, 2063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFKmt7w%3D&md5=c23bca4576f5f6cebf9dc5da9a559077CAS |
[7] S. Kobayashi, T. Kiyosada, S. Shoda, J. Am. Chem. Soc. 1996, 118, 13113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVCgsr8%3D&md5=a6163084d749d6c5a1e1d0a3187067b3CAS |
[8] S. Kobayashi, Macromol. Rapid Commun. 2009, 30, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFelu7g%3D&md5=34c453dc9f705a796e608e0371f6a190CAS | 21706603PubMed |
[9] Y. Yu, D. Wu, C. Liu, Z. Zhao, Y. Yang, Q. Li, Process Biochem. 2012, 47, 1027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVantLg%3D&md5=8c0eee13d662fb7b7d6e6542a2e25728CAS |
[10] M. Reihmann, H. Ritter, Adv. Polym. Sci. 2006, 194, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFais74%3D&md5=1b3643777a6b4f3a90c63a78bb95a3e7CAS |
[11] H. Uyama, in Biocatalysis in Polymer Chemistry (Ed. K. Loos) 2011, Ch. 7, pp. 165–185. (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[12] J. S. Dordick, M. A. Marletta, A. M. Klibanov, Biotechnol. Bioeng. 1987, 30, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFSlu74%3D&md5=f8b5412509d484f74bcfbf01126d04daCAS | 18576580PubMed |
[13] T. Oguchi, S. Tawaki, H. Uyama, S. Kobayashi, Macromol. Rapid Commun. 1999, 20, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVyitbo%3D&md5=4d5717540d81fbc9cdc4b11e93b77ba9CAS |
[14] M. Reihmann, H. Ritter, Macromol. Chem. Phys. 2000, 201, 1593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVSksrc%3D&md5=4f401d0f6a5c5ca091924cada91bc105CAS |
[15] H. Tonami, H. Uyama, S. Kobayashi, T. Fujita, Y. Taguchi, K. Osada, Biomacromolecules 2000, 1, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVCmurs%3D&md5=3285f7b4502ee9052c31d4ea13d44500CAS | 11749146PubMed |
[16] H. Uyama, N. Maruichi, H. Tonami, S. Kobayashi, Biomacromolecules 2002, 3, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFymsLs%3D&md5=d4593be3f607e4b382f88fd5e9f214a0CAS | 11866572PubMed |
[17] J. Kadota, T. Fukuoka, H. Uyama, K. Hasegawa, S. Kobayashi, Macromol. Rapid Commun. 2004, 25, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlGru74%3D&md5=f95e60dc67cca3d09ae845fc9d4a7e20CAS |
[18] K. Won, Y. H. Kim, E. S. An, Y. S. Lee, B. K. Song, Biomacromolecules 2004, 5, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptV2nsrc%3D&md5=99ec930cd4ad96e5c4e216bf3602d296CAS | 14715000PubMed |
[19] A. Bilici, İ. Kaya, M. Yıldırım, F. Doğan, J. Mol. Catal. B - Enzym. 2010, 64, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2kurs%3D&md5=6a1463a73f2211e6207e79512cab8967CAS |
[20] Y. Cui, X. Han, Y. Ding, Z. Lu, Polym. Bull. 2010, 64, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlKgu7Y%3D&md5=cf4a8e179a1c63a0decc521a6fc57686CAS |
[21] H. Kurioka, I. Komatsu, H. Uyama, S. Kobayashi, Macromol. Rapid Commun. 1994, 15, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlKgsbY%3D&md5=3402e398f06951f0af154c41cfb8167cCAS |
[22] H. Uyama, H. Kurioka, J. Sugihara, I. Komatsu, S. Kobayashi, Bull. Chem. Soc. Jpn. 1995, 68, 3209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVKmtro%3D&md5=88cce6616c3578c735c5a1a963034be6CAS |
[23] L. Zhang, W. S. Zhao, Z. L. Ma, G. R. Nie, Y. C. Cui, Eur. Polym. J. 2012, 48, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1WgtLw%3D&md5=b24c2e1d87cc119ef62096d6d3b5b34dCAS |
[24] L. Zhang, W. S. Zhao, H. Z. Chen, Y. C. Cui, J. Mol. Catal. B – Enzym. 2013, 87, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVSk&md5=34b1153f9a102f9fb24e45c7da052c19CAS |
[25] N. Mita, S. Tawaki, H. Uyama, S. Kobayashi, Bull. Chem. Soc. Jpn. 2004, 77, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFamtrY%3D&md5=266b4f7c33be690b56bfba18fde97eaeCAS |
[26] W. Y. Kang, C. F. Li, Y. X. Liu, Med. Chem. Res. 2010, 19, 1222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFGnsL8%3D&md5=7a7589f36799e800673b09645b56373cCAS |
[27] S. Dudonné, X. Vitrac, P. Coutiére, M. Woillez, J. M. Mérillon, J. Agric. Food Chem. 2009, 57, 1768.
| Crossref | GoogleScholarGoogle Scholar | 19199445PubMed |
[28] H. Uyama, H. Kurioka, J. Sugihara, S. Kobayashi, Bull. Chem. Soc. Jpn. 1996, 69, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslahsA%3D%3D&md5=6d735105f000a980eb1a30628b979c56CAS |
[29] H. Uyama, H. Kurioka, J. Sugihara, I. Komatsu, S. Kobayashi, J. Polym. Sci. Pol. Chem. 1997, 35, 1453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislCnt7g%3D&md5=cb23fac10f670e8f51c1982cd86c4aacCAS |
[30] Y. H. Cai, Q. Luo, M. Sun, H. Corke, Life Sci. 2004, 74, 2157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yqtLY%3D&md5=8a52c351e3e5c23f999365c9fc775f9bCAS |
[31] S. Surveswaran, Y. Z. Cai, H. Corke, M. Sun, Food Chem. 2007, 102, 938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1amtA%3D%3D&md5=fa079801e5582012b3228370237f187cCAS |
[32] W. Y. Kang, J. M. Wang, Med. Chem. Res. 2010, 19, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFSgs7Y%3D&md5=980f44e2a73318b13fe2ef72a2481ddaCAS |