Diffusion Studies of Phenylenediamine Isomers in Water-Monohydric-Alcohol Systems
Dale J. Codling A , Gang Zheng A , Tim Stait-Gardner A and William S. Price A BA Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia.
B Corresponding author. Email: w.price@uws.edu.au
Australian Journal of Chemistry 67(6) 922-928 https://doi.org/10.1071/CH13717
Submitted: 5 January 2014 Accepted: 6 February 2014 Published: 11 March 2014
Abstract
The study of isomer diffusion provides useful information regarding solvent effects for mixture analysis. Isomers, particularly those with similar hydrodynamic radii, provide a mechanism for probing solute–solvent interactions. Here nuclear magnetic resonance was used to measure the self-diffusion of phenylenediamine isomers in various water–monohydric-alcohol (i.e. methanol, ethanol, 1-propanol, and tert-butanol) solvents. These systems allowed the effect of solvent modulation on isomer diffusion to be examined. It was found that the resonances of phenylenediamine isomers in a mixture were separable via diffusion, with the separation becoming greater at higher concentration of monohydric-alcohols. Unlike previously shown for dihydroxybenzene isomers, all three phenylenediamine isomers were differentiable via diffusion.
References
[1] D. J. Codling, G. Zheng, T. Stait-Gardner, S. Yang, M. Nilsson, W. S. Price, J. Phys. Chem. B 2013, 117, 2734.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFajsbY%3D&md5=85be1263f64702f14e9a904107e09f06CAS | 23387976PubMed |
[2] R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Sgt7s%3D&md5=a88cd095e60143ed249cb1fba278a635CAS | 19402669PubMed |
[3] W. T. Zimmerman, J. Labelled Compd. Rad. 2000, 43, 767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksF2mtLc%3D&md5=54e482a4609d8469d928956088728189CAS |
[4] J.-P. Wan, S.-F. Gan, J.-M. Wu, Y. Pan, Green Chem. 2009, 11, 1633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ags7%2FK&md5=3bdc3ccc6878c8d303109dd82b4cdacdCAS |
[5] J.-E. Gu, S. Lee, C. M. Stafford, J. S. Lee, W. Choi, B.-Y. Kim, K.-Y. Baek, E. P. Chan, J. Y. Chung, J. Bang, J.-H. Lee, Adv. Mater. 2013, 25, 4778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSgt77I&md5=2b5ae39c3e4ae27bb6236a9ef4cd36beCAS | 23847127PubMed |
[6] R. M. Christie, Colour Chemistry 2001 (The Royal Society of Chemistry: Cambridge).
[7] L. Wang, A. Hu, L. Fan, S. Yang, J. Appl. Polym. Sci. 2013, 130, 3282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2lsbk%3D&md5=202c2e3d9605242fd04327c910c6868bCAS |
[8] R. Ludwig, Angew. Chem. Int. Ed. 2001, 40, 1808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFyqtrw%3D&md5=f2b314c21277fd0d22751377e63b4cbaCAS |
[9] S. Alavi, S. Takeya, R. Ohmura, T. K. Woo, J. A. Ripmeester, J. Chem. Phys. 2010, 133, 074505.
| Crossref | GoogleScholarGoogle Scholar | 20726650PubMed |
[10] A. Geiger, A. Rahman, F. H. Stillinger, J. Chem. Phys. 1979, 70, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXpt1Ohug%3D%3D&md5=6938d1d337bd50998d4818f3096f0772CAS |
[11] W. S. Price, H. Ide, Y. Arata, J. Phys. Chem. A 2003, 107, 4784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOhtro%3D&md5=99f3adee39f5eb34c52d2c0c06a30c24CAS |
[12] G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (Oxford University Press: New York, NY).
[13] W. S. Price, NMR Studies of Translational Motion 2009 (Cambridge University Press: Cambridge).
[14] J. Cassani, M. Nilsson, G. A. Morris, J. Nat. Prod. 2012, 75, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OgtL4%3D&md5=5d212bde11a5fdb4c0aaefd33b82c836CAS | 22276617PubMed |
[15] C. F. Tormena, R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Magn. Reson. Chem. 2010, 48, 550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyksbw%3D&md5=60911a9aaf67049863129cc9e97bbe1eCAS | 20540075PubMed |
[16] C. F. Tormena, R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Magn. Reson. Chem. 2012, 50, 458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlWhsb8%3D&md5=ee5c8abe568fcc075b43c70e2cc7a345CAS | 22549888PubMed |
[17] G. H. Großmann, K. H. Ebert, Ber. Bunsen-Ges. 1981, 85, 1026.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. L. Finney, D. T. Bowron, A. K. Soper, J. Phys. Condens. Matter 2000, 12, A123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFeisLc%3D&md5=6222c5fb0c12f61f6e28f8595b26a059CAS |
[19] S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, V. Yuzhakov, Mol. Phys. 2010, 108, 2427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gns7rE&md5=43368bd1682ec019ff5822b29972d228CAS |
[20] K. R. Harris, L. A. Woolf, J. Chem. Eng. Data 2004, 49, 1064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVSmurg%3D&md5=e548fd086bebf7e25b04471434327281CAS |
[21] R. Mills, J. Phys. Chem. 1973, 77, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFGgt74%3D&md5=778cb7ae76e6be9f553d5a93d6f3fb19CAS |
[22] W. S. Price, H. Ide, Y. Arata, J. Phys. Chem. A 1999, 103, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlyrsw%3D%3D&md5=b4ff11d4da03066f4965cd101f32b320CAS |
[23] W. S. Price, H. Ide, Y. Arata, O. Söderman, J. Phys. Chem. B 2000, 104, 5874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Kmsb0%3D&md5=d46e8c0acd4f650c26178fd03bed4deaCAS |
[24] A. K. Soper, C. J. Benmore, Phys. Rev. Lett. 2008, 101, 065502.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crns1OhsQ%3D%3D&md5=feb56c4afcb179832c000ebe5a68990dCAS | 18764471PubMed |
[25] S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Nature 2002, 416, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFyksb4%3D&md5=6db540202c101a025f8ea15266a149eeCAS | 11976678PubMed |
[26] C. Corsaro, R. Maisano, D. Mallamace, G. Dugo, Physica A 2013, 392, 596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWisLnE&md5=34e41ef2222cdc244650c3e7f01f21ccCAS |
[27] E. Hawlicka, R. Grabowski, J. Phys. Chem. 1992, 96, 1554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XptFyrsQ%3D%3D&md5=d191d42e878e459cc952fe7776c3855cCAS |
[28] K. C. Pratt, W. A. Wakeham, Proc. R. Soc. Lond. A 1975, 342, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsVGis70%3D&md5=894577d039c7e53fa6590e5fb3f6259eCAS |
[29] A. Einstein, Investigations on the Theory of the Brownian Movement (Ed. R. Fürth, translated by A. D. Cowper) 1956 (Dover Publications: New York, NY).
[30] G. G. Stokes, Trans. Cambridge Philos. Soc. 1856, 9, 8.
[31] W. Sutherland, Philos. Mag. 1905, 9, 781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XpsVA%3D&md5=e3d9ff189fe4f9175cc7e74b7e3d39b9CAS |
[32] R. Zwanzig, A. K. Harrison, J. Chem. Phys. 1985, 83, 5861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVaiug%3D%3D&md5=1fa95bc8f4a2caff402301221876d6c5CAS |
[33] L. Korson, W. Drost-Hansen, F. J. Millero, J. Phys. Chem. 1969, 73, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltVyjtg%3D%3D&md5=6cefa13a8f233f156451a8136f5e6d82CAS |
[34] A. Korosi, B. M. Fabuss, Anal. Chem. 1968, 40, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktlCitw%3D%3D&md5=ae5f73b058cebf6946c3e6b7f968dd95CAS |
[35] D. Feakins, F. M. Bates, W. E. Waghorne, K. G. Lawrence, J. Chem. Soc., Faraday Trans. 1993, 89, 3381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1Krsw%3D%3D&md5=40f83f7e57bc8b2da1b4b020d78e94e1CAS |
[36] R. L. Kay, T. L. Broadwater, J. Solution Chem. 1976, 5, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsFKnsLc%3D&md5=d4d1a7a02f0b8b19a551c5596cebb3a5CAS |
[37] S. Z. Mikhail, W. R. Kimel, J. Chem. Eng. Data 1963, 8, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksVGhsLo%3D&md5=8932eee2ab1c6d5d07f4df87dbe02bd6CAS |
[38] T. L. Broadwater, R. L. Kay, J. Phys. Chem. 1970, 74, 3802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXlt1Cjsb8%3D&md5=db88e20151742099e8081a7d91994db7CAS |
[39] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |
[40] T. C. Chan, N. Chen, J. G. Lu, J. Phys. Chem. A 1998, 102, 9087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVaktrg%3D&md5=bad898a011954720d030d6554990e260CAS |
[41] J. T. Edward, J. Chem. Educ. 1970, 47, 261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktVOgtrs%3D&md5=d5d569098475ffbeeb83fef69cfad2a6CAS |
[42] J. B. Lambert, Organic Structural Spectroscopy 1998 (Prentice Hall: London).
[43] S. G. Estácio, P. Cabral do Couto, B. J. Costa Cabral, M. E. Minas da Piedade, J. A. Martinho Simões, J. Phys. Chem. A 2004, 108, 10834.
| Crossref | GoogleScholarGoogle Scholar |
[44] P. Krueger, Can. J. Chem. 1967, 45, 2135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXlvV2iug%3D%3D&md5=172c5892549290626b1f08185f31d9a5CAS |
[45] M. Piotto, V. Saudek, V. Sklenář, J. Biomol. NMR 1992, 2, 661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVyktrY%3D&md5=14782cb66a245463c45b17d8d994e040CAS | 1490109PubMed |