Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Biocompatible Gelatin-functionalised Graphene Nanosheets For Drug Delivery Applications

Guangxin Chen A , Congde Qiao A B , Yang Wang A and Jinshui Yao A
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Qilu University of Technology, Jinan 250353, China

B Corresponding author. Email: cdqiao@spu.edu.cn

Australian Journal of Chemistry 67(10) 1532-1537 https://doi.org/10.1071/CH13678
Submitted: 10 December 2013  Accepted: 1 March 2014   Published: 1 May 2014

Abstract

Gelatin-functionalised graphene nanosheets (gelatin-GNS) with good biocompatibility were successfully synthesised using gelatin as a reductant. Factors that affect the reduction of graphene oxide (GO), such as the ratio of gelatin to GO, pH, and temperature, were investigated to establish optimum reaction conditions. We found that GO was efficiently reduced by gelatin at a comparatively low temperature and a stable gelatin-GNS aqueous dispersion was formed. The as-obtained biocompatible gelatin-GNS displayed a high methotrexate (MTX) drug loading capacity and a good ability for controlled drug release. The pH-dependent release behaviour of MTX from MTX@gelatin-GNS showed that the release amount under acid conditions was much higher than that under neutral conditions, indicating a gelatin-mediated sustained release process.


References

[1]  K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kqt70%3D&md5=e5b9479fc54c97cb1f1c2a10fa1f1146CAS | 15499015PubMed |

[2]  F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFKjsrs%3D&md5=120baa7dad453ba240c72b95b7a1c92cCAS | 17660825PubMed |

[3]  C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOrs7k%3D&md5=fd8ef2af45b44a2835749b32633f8f97CAS | 18635798PubMed |

[4]  J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature 2007, 446, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1arsLs%3D&md5=863e23f7d30919234f442282139eec85CAS | 17330039PubMed |

[5]  R. Mas-Ballesté, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, Nanoscale 2011, 3, 20.
         | Crossref | GoogleScholarGoogle Scholar | 20844797PubMed |

[6]  R. Z. Ma, T. Sasaki, Adv. Mater. 2010, 22, 5082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgs7jM&md5=3b8d0349d40334aacf82b38f7484970bCAS |

[7]  K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrnI&md5=808f6c5b775cd16a573b01b171045403CAS | 16281030PubMed |

[8]  K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kqt70%3D&md5=e5b9479fc54c97cb1f1c2a10fa1f1146CAS | 15499015PubMed |

[9]  Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrnJ&md5=7e5e0be5fc4c04e151f94d39d677def2CAS | 16281031PubMed |

[10]  K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12qu7s%3D&md5=383f424a5ac329a4190a54e2738366eeCAS |

[11]  J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1SltbY%3D&md5=6486b900b19f6eb0f3afe3823af873aeCAS | 18654504PubMed |

[12]  R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWgt7k%3D&md5=954303b62b91e71ab33a2292eab2affeCAS | 18388259PubMed |

[13]  F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen, Science 2008, 320, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlGjt7k%3D&md5=effa799c078e571b4726286dfd0d96f9CAS | 18339901PubMed |

[14]  K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, Phys. Rev. Lett. 2008, 101, 196405.
         | Crossref | GoogleScholarGoogle Scholar | 19113291PubMed |

[15]  P. Avouris, Nano Lett. 2010, 10, 4285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahu7bP&md5=a39b5a4df6713220073a3dae964792fcCAS |

[16]  S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFWktL4%3D&md5=cfa5792a702e2c1c88588223e3bcf153CAS | 19350030PubMed |

[17]  M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman, J. Am. Chem. Soc. 2009, 131, 3611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1ersrk%3D&md5=19ca0164468622bd37100c31da1ce2f5CAS | 19227978PubMed |

[18]  S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, Small 2010, 6, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKis7k%3D&md5=fcde3fea957f44c27da04527c080e962CAS | 19859943PubMed |

[19]  H. X. Chang, G. F. Wang, A. Yang, X. M. Tao, X. Q. Liu, Y. D. Shen, Z. J. Zheng, Adv. Funct. Mater. 2010, 20, 2893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFalsr3I&md5=89d822c263c0c54fb7502d35c70f275cCAS |

[20]  S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 2010, 4, 3169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt12nu78%3D&md5=c1e423b4bc140246c4f9b9dac31da346CAS | 20481512PubMed |

[21]  D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature 2007, 448, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFajurc%3D&md5=c619ab2c5f1a1110f359fec53c3f95d7CAS | 17653188PubMed |

[22]  H. F. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. J. Zou, X. D. Chen, J. S. Wu, Carbon 2011, 49, 1787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgs7s%3D&md5=264cfd886c3cccece412dd0cd8e3209bCAS |

[23]  M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kotz, Electrochem. Commun. 2011, 13, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1alurbM&md5=583bc0d0043c40db7ae9106407b44b3dCAS |

[24]  H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1KksLs%3D&md5=5a6025befc896751167dd3db8740a043CAS |

[25]  C. Shan, H. Yang, J. Song, D. X. Han, A. Ivaska, L. Niu, Anal. Chem. 2009, 81, 2378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVOnurc%3D&md5=fb87655c96840520eaf849b01c306189CAS | 19227979PubMed |

[26]  M. Zhou, Y. Zhai, S. J. Dong, Anal. Chem. 2009, 81, 5603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Wrtbs%3D&md5=e9f6f564aac2e62a399844d15cafc8c6CAS | 19522529PubMed |

[27]  S. Mao, G. Lu, K. Yu, Z. Bo, J. H. Chen, Adv. Mater. 2010, 22, 3521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKiu7zI&md5=168e88c28f9d203092bdb81f04964a1fCAS | 20665564PubMed |

[28]  Y. Q. Guo, X. Y. Sun, Y. Liu, W. Wang, H. X. Qiu, J. P. Gao, Carbon 2012, 50, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1OrsL8%3D&md5=c562c23f3a984d0bb6a778be5a6b7df3CAS |

[29]  O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, J. Mater. Chem. 2012, 22, 13773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGgs70%3D&md5=c3428b59ba6efbcbd749e9fd9c7e2af2CAS |

[30]  J. B. Liu, S. H. Fu, B. Yuan, Y. L. Li, Z. X. Deng, J. Am. Chem. Soc. 2010, 132, 7279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFSksLY%3D&md5=e3ba93beb5b32bfe08efa1f37e2e0d9dCAS |

[31]  I. Kaminska, M. R. Das, Y. Coffinier, J. Niedziolka-Jonsson, J. Sobczak, P. Woisel, J. Lyskawa, M. Opallo, R. Boukherroub, S. Szunerits, ACS Appl. Mater. Interfaces 2012, 4, 1016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVaiug%3D%3D&md5=66f94c6550c90b6aa057720a4d34c0d6CAS | 22214550PubMed |

[32]  C. Gao, B. Book-Newell, J. Irudayarai, Chem. Commun. 2011, 47, 12658.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  K. P. Liu, J. J. Zhang, F. F. Cheng, T. T. Zheng, C. M. Wang, J. J. Zhu, J. Mater. Chem. 2011, 21, 12034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslSjtbs%3D&md5=bdec48504535c2e4441e2b00890e4893CAS |

[34]  K. N. J. Burger, R. W. H. M. Staffhorst, H. C. de Vijlder, M. J. Velinova, P. H. Bomans, P. M. Frederik, B. de Kruijff, Nat. Med. 2002, 8, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjtlygtw%3D%3D&md5=660290b9501992fbfc9c77fa07a77af9CAS |

[35]  Z. Liu, X. M. Sun, N. Nakayama-Ratchford, H. J. Dai, ACS Nano 2007, 1, 50.
         | Crossref | GoogleScholarGoogle Scholar | 19203129PubMed |

[36]  Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc. 2008, 130, 10876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCqu78%3D&md5=1b765e8325d882cde4cfb54b9649315cCAS | 18661992PubMed |

[37]  A. N. Koo, H. J. Lee, S. E. Kim, J. H. Chang, C. Park, C. Kim, J. H. Park, S. C. Lee, Chem. Commun. 2008, 48, 6570.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang, Y. Chen, J. Phys. Chem. C 2008, 112, 17554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGns7jO&md5=2b438ef817becc3f2803f497c76861d0CAS |

[39]  W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlt1yjuw%3D%3D&md5=0c3d61247b38cba6a84e1bc81ef53c64CAS |

[40]  M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 2004, 42, 2929.
         | 1:CAS:528:DC%2BD2cXnsV2qurc%3D&md5=c00cb5756da78035066645d9f2d2438aCAS |

[41]  D. Y. Lee, Z. Khatun, J. H. Lee, Y. K. Lee, Biomacromolecules 2011, 12, 336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCgsg%3D%3D&md5=2c99305a263f5c48bc3f69ddc661fb4cCAS |

[42]  M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. M. Tascón, J. Phys. Chem. C 2010, 114, 6426.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGkur4%3D&md5=f9b0a41b5b01245c20f5eaaed1d23c29CAS |