Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Transition Metal-Free Synthesis of Pinacol Arylboronate: Regioselective Boronation of 1,3-Disubstituted Benzenes

Yan Wang A , Le Wang A , Ling-Yan Chen A , Pinaki S. Bhadury A and Zhihua Sun A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.

B Corresponding author. Email: sungaris@gmail.com

Australian Journal of Chemistry 67(4) 675-678 https://doi.org/10.1071/CH13642
Submitted: 20 November 2013  Accepted: 13 December 2013   Published: 17 January 2014

Abstract

The regioselective synthesis of pinacol arylboronate has been achieved from 1,3-disubstituted benzene through directed ortho-metallation (DoM)–borylation sequence. A wide range of substituents and borylating reagents were investigated. In situ lithiation and subsequent boronation predominantly occurred at the ortho-position to afford the desired products in moderate yields.


References

[1]  R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeisbk%3D&md5=49251a29dad7e9d968f9722d8b933794CAS | 21319862PubMed |

[2]  Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Ed. D. G. Hall) 2005 (Wiley-VCH: Weinheim).

[3]  A. Suzuki, Angew. Chem. 2011, 123, 6854.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGiurg%3D&md5=dfaf96e9cf0d31092c21c8dddd3b2871CAS |

[5]  (a) P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. 2011, 123, 539.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. 2011, 50, 519.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. Furuya, H. M. Kaiser, T. Ritter, Angew. Chem. 2008, 120, 6082.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. Chu, F. Qing, Org. Lett. 2010, 12, 5060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cgs73E&md5=27f977a2c4c5d8f6df0b166d80a7fd1bCAS | 20923196PubMed |

[8]  K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G. A. Chotana, M. A. Rak, M. R. Smith, J. Am. Chem. Soc. 2005, 127, 10539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWitbw%3D&md5=6fa59df2de466caa109c51a05adbd97bCAS | 16045341PubMed |

[10]  K. I. Goldberg, A. S. Goldman, Activation and Functionalization of C-H Bonds 2004 (American Chemical Society: Washington, D.C.).

[11]  T. Ishiyama, Y. Nobuta, J. F. Hartwig, N. Miyaura, Chem. Commun. 2003, 2924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWktr8%3D&md5=5794462ffda3f4bea0ec41b9a7d9f687CAS |

[12]  L. Iannazzo, K. P. C. Vollhardt, M. Malacria, C. Aubert, V. Gandon, Eur. J. Org. Chem. 2011, 3283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGruro%3D&md5=0571d6759c67bfd8e45c0a7ba3014fe5CAS |

[13]  A. Maderna, H. Pritzkow, W. Siebert, Angew. Chem. 1996, 108, 1664.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Yoshida, K. Okada, S. Kawashima, K. Tanino, J. Ohshita, Chem. Commun. 2010, 46, 1763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1OkurY%3D&md5=e1bb910e9e0c7bcf3d74d0c56952f579CAS |

[15]  H. Yoshida, S. Kawashima, Y. Takemoto, K. Okada, J. Ohshita, K. Takaki, Angew. Chem. 2012, 124, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. Zhu, J. Duquette, M. Zhang, J. Org. Chem. 2003, 68, 3729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWhu7o%3D&md5=51323ee194edbe5bb9f202c322509a0cCAS | 12713390PubMed |

[17]  F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang, Angew. Chem. 2010, 122, 1890.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Li, L. Wang, Y. Zhang, J. Wang, Angew. Chem. 2012, 51, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFWrurY%3D&md5=aa330321f3b86ab79110ae972ceb0826CAS |

[19]  M. Alessi, A. L. Larkin, K. A. Ogilvie, L. A. Green, S. Lai, S. Lopez, V. Snieckus, J. Org. Chem. 2007, 72, 1588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGltrc%3D&md5=6f15a1e1ec4b930c2bb6263955080d3bCAS | 17284076PubMed |

[20]  M. Burger, G. Nishiguchi, T. D. Machajewki, A. Rico, R. L. Simmons, A. R. Smith, V. Tamez, H. Tanner, L. Wan, U. S. Patent 2012/0225062 A1 2012.

[21]  L. Wang, Y. Wang, F.-X. Guo, Y. Zheng, P. S. Bhadury, Z. Sun, Tetrahedron Lett. 2013, 54, 6053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2msL%2FF&md5=886cf952a3fa1285522af32c7a7d6033CAS |

[22]  T. Leermann, F. R. Leroux, F. Colobert, Org. Lett. 2011, 13, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSrt7%2FI&md5=b0bf5b03e1d653234a1d3623eb15e49bCAS | 21834521PubMed |

[23]  M. Gao, S. B. Thorpe, W. L. Santos, Org. Lett. 2009, 11, 3478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVCqtbY%3D&md5=e4cf711bea50442168ee27ee2a1f31c3CAS | 19594167PubMed |

[24]  T. Ohmura, T. Torigoe, M. Suginome, J. Am. Chem. Soc. 2012, 134, 17416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOiu73O&md5=a41f2cbedec649e4e30006de441dd89bCAS | 23043232PubMed |

[25]  T. Kurahashi, T. Hata, H. Masai, H. Kitagawa, M. Shimizu, T. Hiyama, Tetrahedron 2002, 58, 6381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGntLg%3D&md5=e060e5b5c26d8e65f1dbb901c5e9df78CAS |

[26]  R. F. Leroux, B. Manteau, J. P. Vors, S. Pazenok, Beilstein J. Org. Chem. 2008, 13, 1.