Synthesis and Phase Transfer of Monodisperse Iron Oxide (Fe3O4) Nanocubes
Melissa R. Dewi A , William M. Skinner A and Thomas Nann A BA Ian Wark Research Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095, Australia.
B Corresponding author. Email: thomas.nann@unisa.edu.au
Australian Journal of Chemistry 67(4) 663-669 https://doi.org/10.1071/CH13595
Submitted: 1 November 2013 Accepted: 2 December 2013 Published: 20 December 2013
Abstract
Cube-shaped magnetic iron oxide nanoparticles were synthesised and studied with the aim to achieve superior magnetic properties. This study describes a straightforward and simple synthesis method for preparing monodisperse 11–14-nm superparamagnetic iron oxide nanocubes via an ‘effective monomer’ growth mechanism. The as-synthesised nanoparticles are insoluble in water. However, substitution of the non-polar ligands of the particles using a new method that involved an ionic compound generated colloidally stable and water dispersible cube-shaped particles with a very small hydrodynamic diameter. The cubes displayed superior magnetic properties over spherical particles.
References
[1] F. Y. Jiang, C. M. Wang, Y. Fu, R. C. Liu, J. Alloy. Compd. 2010, 503, L31.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWhsL4%3D&md5=1efa85b5171b912937535f85285b1fe1CAS |
[2] L. M. Armijo, Y. I. Brandt, D. Mathew, S. Yadav, S. Maestas, A. C. Rivera, N. C. Cook, N. J. Withers, G. A. Smolyakov, N. L. Adolphi, T. C. Monson, D. L. Huber, H. D. C. Smyth, M. Osiński, Nanomaterials 2012, 2, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFWlsrs%3D&md5=aa96cd0d57ca3f7d2151c22fe862a3a5CAS |
[3] G. Zhen, B. W. Muir, B. A. Moffat, P. Harbour, K. S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, P. G. Hartley, J. Phys. Chem. C 2011, 115, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqsbjK&md5=42b579d96ba0f0b1156d3ec1893f2bc3CAS |
[4] S. Y. Chang, N.-Y. Zheng, C.-S. Chen, C.-D. Chen, Y.-Y. Chen, C. R. C. Wang, J. Am. Soc. Mass Spectr. 2007, 18, 910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWmtL4%3D&md5=f9503ce694ca461642e34631f491d1f0CAS |
[5] J. W. M. Bulte, D. L. Kraitchman, NMR Biomed. 2004, 17, 484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFGq&md5=d570ab3f97850620681a5976c62fc91fCAS |
[6] M. Hatakeyama, H. Kishi, Y. Kita, K. Imai, K. Nishio, S. Karasawa, Y. Masaike, S. Sakamoto, A. Sandhu, A. Tanimoto, T. Gomi, E. Kohda, M. Abe, H. Handa, J. Mater. Chem. 2011, 21, 5959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlyisro%3D&md5=832c58d7bb85fae5993e5480c6a634e8CAS |
[7] N. Zheng, J. Fan, G. D. Stucky, J. Am. Chem. Soc. 2006, 128, 6550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyitLw%3D&md5=5866ee83ebc0a65206ccf00a24787dfdCAS | 16704242PubMed |
[8] P. Guardia, R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, T. Pellegrino, ACS Nano 2012, 6, 3080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltlahs7g%3D&md5=3e9ef8878484932a2f8b84cae333d9aaCAS | 22494015PubMed |
[9] A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFWr&md5=10e34f7bf5f030174c3cb81551ff9dceCAS | 15626447PubMed |
[10] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsLk%3D&md5=848da3206fc74e9dd930630b1ccec04cCAS |
[11] A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitF2lurs%3D&md5=7fad21a34db45a17159e41b07ed5247aCAS |
[12] Z. Xu, C. Shen, Y. Tian, X. Shi, H.-J. Gao, Nanoscale 2010, 2, 1027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKktrjJ&md5=ed73f7588603b5c9029aa55465999322CAS | 20648303PubMed |
[13] B. Voigt, A. Göbler, Cryst. Res. Technol. 1986, 21, 1177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFOquw%3D%3D&md5=77e0a7094082ce84c0723f4f949c9f57CAS |
[14] Z. Li, H. Chen, H. Bao, M. Gao, Chem. Mater. 2004, 16, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXit1Sqt70%3D&md5=e1a05a735b49eea878fd9b4fd1038261CAS |
[15] J. H. L. Beal, S. Prabakar, N. Gaston, G. B. Teh, P. G. Etchegoin, G. Williams, R. D. Tilley, Chem. Mater. 2011, 23, 2514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFGjsbg%3D&md5=9cbbfaa317c0e901ff3f6e52eef9a23eCAS |
[16] J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVehtrjM&md5=e2b2588014184e7df4762d2667c10865CAS | 15568032PubMed |
[17] Y. Kang, J. B. Pyo, X. Ye, R. E. Diaz, T. R. Gordon, E. A. Stach, C. B. Murray, ACS Nano 2013, 7, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlsr7N&md5=b3425120aef7da5a7e1c2adae16a70e2CAS | 23211025PubMed |
[18] S. Kumar, T. Nann, Small 2006, 2, 316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1aqs7w%3D&md5=a7732c355a31f58629f2a785e244d913CAS | 17193043PubMed |
[19] T. Wang, X. Wang, D. LaMontagne, Z. Wang, Z. Wang, Y. C. Cao, J. Am. Chem. Soc. 2012, 134, 18225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2rs7zF&md5=e785d3371f27f245a811991f160d9a0bCAS | 23057799PubMed |
[20] W. E. Mahmoud, L. M. Bronstein, F. Al-Hazmi, F. Al-Noaiser, A. A. Al-Ghamdi, Langmuir 2013, 29, 13095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelsbrL&md5=70af36051305bfbafeff33e0a23a64a2CAS | 24079275PubMed |
[21] C. Yang, J. Wu, Y. Hou, Chem. Commun. 2011, 47, 5130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKrtro%3D&md5=81279e788986fe6b7ae7990dce6a81cfCAS |
[22] S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, J. Am. Chem. Soc. 2007, 129, 12571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmsbfI&md5=e9bd92b0c53fd08f396cd4ed038dfe30CAS | 17887758PubMed |
[23] Y. Xu, Y. Qin, S. Palchoudhury, Y. Bao, Langmuir 2011, 27, 8990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWhs7w%3D&md5=cce6e1742c4d5026be8d4f1ba1f41964CAS | 21644795PubMed |
[24] C. Tassa, S. Y. Shaw, R. Weissleder, Accounts Chem. Res. 2011, 44, 842.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlCrtL4%3D&md5=4a2358127424c5a7afd6a6bb900c6e9dCAS |
[25] M. Carmen Bautista, O. Bomati-Miguel, M. del Puerto Morales, C. J. Serna, S. Veintemillas-Verdaguer, J. Magn. Magn. 2005, 293, 20.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. C. Berry, S. Wells, S. Charles, A. S. G. Curtis, Biomaterials 2003, 24, 4551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVanu7g%3D&md5=c7741ecf8443e06d9c8f2f955d167c94CAS | 12950997PubMed |
[27] H. Wu, H. Zhu, J. Zhuang, S. Yang, C. Liu, Y. C. Cao, Angew. Chem. Int. Ed. 2008, 47, 3730.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKiu7w%3D&md5=9d619c257fa3f0c1e521f2e8ee4bd920CAS |
[28] P. D. McNaughter, J. C. Bear, D. C. Steytler, A. G. Mayes, T. Nann, Angew. Chem. Int. Ed. 2011, 50, 10384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOls73P&md5=fccb9bf9329ef40f01fdb5a98968c467CAS |
[29] M. Wang, M.-L. Peng, W. Cheng, Y.-L. Cui, C. Chen, J. Nanosci. Nanotechnol. 2011, 11, 3688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOksL4%3D&md5=1af8cd135131b3ebb29d46b82fa4f0a3CAS | 21776755PubMed |
[30] L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotl2nt78%3D&md5=f0a6e4001593b0b8481c2c51d7cd47beCAS |
[31] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 1389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSgtA%3D%3D&md5=201a3877e8c89b6d54501eaec220d294CAS |
[32] G. Wulff, Z. Kristallogr. Minera. 1901, 449.
| 1:CAS:528:DyaD28XhtVWq&md5=2522d6d525000e9af90c906250455297CAS |
[33] H.-Q. Wang, T. Nann, ACS Nano 2009, 3, 3804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaltb3O&md5=6ff9be67efd8796dd8c41edf527cd2c9CAS | 19873986PubMed |
[34] Y. S. Dedkov, M. Fonin, D. V. Vyalikh, J. O. Hauch, S. L. Molodtsov, U. Rüdiger, G. Güntherodt, Phys. Rev. B 2004, 70, 073405.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. Fonin, R. Pentcheva, Y. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. Rüdiger, G. Güntherodt, Phys. Rev. B 2005, 72, 104436.
| Crossref | GoogleScholarGoogle Scholar |
[36] T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, R. L. White, Phys. Rev. B 2001, 64, 214422.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, C. B. Murray, J. Am. Chem. Soc. 2011, 133, 998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2kurvF&md5=0281c034252dc6568c60619be9d867c0CAS | 21175183PubMed |