Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Recent Developments in the Synthetic Uses of Silyl-protected Enoldiazoacetates for Heterocyclic Syntheses

Xinfang Xu A B and Michael P. Doyle A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.

B Corresponding authors. Email: xxu123@umd.edu; mdoyle3@umd.edu




Xinfang Xu was born in Zhejiang Province, China. He received his Bachelor of Science degree in Chemistry from East China Normal University in 2005 and his PhD in Organic Chemistry from the same university, where he worked under the direction of Professor Liping Yang (2005–2006) and Wenhao Hu (2006–2010) on cooperative-catalysed asymmetric multicomponent reactions. After graduation, Dr Xu joined Professor Doyle's research group at the University of Maryland (at College Park). His current research interest is the development of asymmetric cycloaddition reactions.



Michael P. Doyle is Professor of Chemistry at the University of Maryland, College Park. He received his Bachelor of Science degree from the College of St. Thomas in St. Paul (MN, USA) and his PhD from Iowa State University. Following a postdoctoral engagement at the University of Illinois at Chicago Circle, Professor Doyle joined the faculty at Hope College in 1968 and was appointed the first Kenneth Herrick Professor in 1982. In 1984, he moved to Trinity University (San Antonio, TX, USA) as the Dr. D. R. Semmes Distinguished Professor of Chemistry, and in 1997 he went to Tucson (AZ, USA) as Vice President, then President, of Research Corporation and Professor of Chemistry at the University of Arizona. Professor Doyle moved to the University of Maryland in 2003. He has been the recipient of numerous national awards, including the George C. Pimentel Award for Chemical Education (2002) and the Arthur C. Cope Scholar Award (2006) from the American Chemical Society. He has written or co-authored 11 books, 22 book chapters, and is the co-author of more than 330 journal publications.

Australian Journal of Chemistry 67(3) 365-373 https://doi.org/10.1071/CH13576
Submitted: 23 October 2013  Accepted: 8 November 2013   Published: 16 December 2013

Abstract

Diazo compounds have been used as precursors to a wide variety of heterocyclic compounds that represent the core structural subunits in many biologically active compounds. Various methodologies have been established for their synthesis via metal-catalyzed carbene transformations. Although the advantages of vinyldiazoacetates have been known for many years, realization of the synthetic use of enoldiazoacetates has been more recent. This review covers advances in the utility of silyl-protected enoldiazoacetates in heterocycle syntheses that include X–H insertion reactions, ylide rearrangements, formal [3+3]- and [4+3]-cycloaddition reactions, and other traditional and unusual metal carbene transformations.


References

[1]  (a) For reviews, see: Y. Bourne, H. C. Kolb, Z. Radic, K. B. Sharpless, P. Taylor, P. Marchot, Proc. Natl. Acad. Sci. USA 2004, 101, 1449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFaqsL8%3D&md5=8dbd8eb0b500e2fa3f370e55391a8255CAS | 14757816PubMed |
      (b) B. S. Holla, M. Mahalinga, M. S. Karthikeyan, B. Poojary, P. M. Akberathi, N. S. Kumari, Eur. J. Med. Chem. 2005, 40, 1173.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Stark, M. Kathmann, E. Schlicker, W. Schunack, B. Schlegel, W. Sippl, Mini Rev. Med. Chem. 2004, 4, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For reviews, see: F. C. da Silva, A. K. Jordao, D. R. Rocha, S. B. Ferreira, A. C. Cunha, V. F. Ferreira, Curr. Org. Chem. 2012, 16, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xisleks7g%3D&md5=7b459161a97f650d5b25757176330081CAS |
      (b) M. M. Miller, A. J. DelMonte, Prog. Heterocycl. Chem. 2011, 23, 371.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Albrecht, L. K. Ransborg, K. A. Jørgensen, Catal. Sci. Technol. 2012, 2, 1089.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. K. Bur, A. Padwa, Chem. Rev. 2004, 104, 2401.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Álvarez-Corral, M. Muñoz-Dorado, I. Rodríguez-García, Chem. Rev. 2008, 108, 3174.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. R. Katritzky, S. Rachwal, Chem. Rev. 2011, 111, 7063.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds 1998 (John Wiley & Sons: New York).
      (b) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. P. Doyle, L. Yu, M. O. Ratnikov, Org. React. 2013, 80, 1.
      (e) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S.-F. Zhu, B. Xu, G.-P. Wang, Q.-L. Zhou, J. Am. Chem. Soc. 2012, 134, 436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgtLvF&md5=5dd8318c2c6be381acf4ebd4e2ba38daCAS | 22066865PubMed |
      (b) B. Liu, S.-F. Zhu, W. Zhang, C. Chen, Q.-L. Zhou, J. Am. Chem. Soc. 2007, 129, 5834.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. C. Lee, G. C. Fu, J. Am. Chem. Soc. 2007, 129, 12066.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. Xu, S.-F. Zhu, X. Xie, J. Shen, Q.-L. Zhou, Angew. Chem. Int. Ed. 2011, 50, 11483.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. J. Moody, Angew. Chem. Int. Ed. 2007, 46, 9148.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) F. Ye, X. Ma, Q. Xiao, H. Li, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2012, 134, 5742.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. P. Doyle, M. Ratnikov, Y. Liu, Org. Biomol. Chem. 2011, 9, 4007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFyhtrc%3D&md5=7172e87b8bc2401d09863da4ba9fb086CAS | 21298163PubMed |
      (b) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) M. P. Doyle, S. B. Davies, W. Hu, Org. Lett. 2000, 2, 1145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFymtrw%3D&md5=536d042585554ea76101d75024a6f78bCAS | 10804575PubMed |
      (b) J. Zhang, C. Che, Org. Lett. 2002, 4, 1911.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Chen, J. V. Ruppel, X. P. Zhang, J. Am. Chem. Soc. 2007, 129, 12074.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. DeAngelis, O. Dmitrenko, J. M. Fox, J. Am. Chem. Soc. 2012, 134, 11035.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. Qin, V. Boyarskikh, J. H. Hansen, K. I. Hardcastle, D. G. Musaev, H. M. L. Davies, J. Am. Chem. Soc. 2011, 133, 19198.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. Goto, K. Takeda, M. Anada, K. Ando, S. Hashimoto, Tetrahedron Lett. 2011, 52, 4200.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) M. P. Doyle, D. G. Ene, D. C. Forbes, J. S. Tedrow, Tetrahedron Lett. 1997, 38, 4367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOisLw%3D&md5=00b25cb997e723522a99d70bcc9fab35CAS |
      (b) X. Xu, Y. Qian, L. Yang, W. Hu, Chem. Commun. 2011, 797.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Zhang, Y. Liu, L. Ling, Y. Li, Y. Dong, M. Gong, X. Zhao, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2011, 133, 4330.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Li, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 396.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Ma, L. Peng, C. Li, X. Zhang, J. Wang, J. Am. Chem. Soc. 2005, 127, 15016.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Padwa, L. S. Beall, C. K. Eidell, K. J. Worsencroft, J. Org. Chem. 2001, 66, 2414.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) N. Shimada, T. Oohara, J. Krishnamurthi, H. Nambu, S. Hashimoto, Org. Lett. 2011, 13, 6284.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Y. Ueda, G. Roberge, V. Vinet, Can. J. Chem. 1984, 62, 2936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXnvVKhsw%3D%3D&md5=a0e547cfa4564cdcd87ebe69e6541723CAS |
      (b) J. D. Buynak, M. N. Rao, H. Pajouhesh, R. Y. Chandrasekaran, K. Finn, P. Meester, S. C. Chu, J. Org. Chem. 1985, 50, 4245.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) D. J. Hart, C. Lee, W. H. Pirkle, M. H. Hyon, A. Tsipouras, J. Am. Chem. Soc. 1986, 108, 6054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlslais7s%3D&md5=fd4662416139a10dbf3bac4495a241a9CAS | 22175380PubMed |
      (b) G. Cainelli, M. Panunzio, D. Giacomini, G. Martelli, G. Spunta, J. Am. Chem. Soc. 1988, 110, 6879.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. J. Bodner, R. M. Phelan, C. A. Townsend, Org. Lett. 2009, 11, 3606.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) B. D. Schwartz, J. R. Denton, Y. Lian, H. M. L. Davies, C. M. Williams, J. Am. Chem. Soc. 2009, 131, 8329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOntbw%3D&md5=f1d77e30c54c54b3c73f25dbd35a256cCAS | 19445507PubMed |
      (b) Y. Lian, L. C. Miller, S. Born, R. Sarpong, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 12422.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. M. L. Davies, D. G. Stafford, B. D. Doan, J. H. Houser, J. Am. Chem. Soc. 1998, 120, 3326.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. G. Smith, H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 18241.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Xu, Y. Qian, P. Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 1244.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Qian, P. J. Zavalij, W. Hu, M. P. Doyle, Org. Lett. 2013, 15, 1564.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. M. Truong, M. D. Mandler, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2013, 15, 3278.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) Y. Lian, K. I. Hardcastle, H. M. L. Davies, Angew. Chem. Int. Ed. 2011, 50, 9370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSlt7jN&md5=eb0156a08b61535f8c2a13e5dcfe0774CAS |
      (b) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2011, 133, 11940.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. S. Shanahan, P. Truong, S. M. Mason, J. S. Leszczynski, M. P. Doyle, Org. Lett. 2013, 15, 3642.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Xu, P. Y. Zavalij, W. Hu, M. P. Doyle, J. Org. Chem. 2013, 78, 1583.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) X. Xu, W. Hu, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 6392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFahsLc%3D&md5=e6c6b2acd5fc12afb7d2098b3096a46bCAS |
      (b) M. P. Doyle, K. Kundu, A. E. Russell, Org. Lett. 2005, 7, 5171.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Liu, Y. Zhang, N. Jee, M. P. Doyle, Org. Lett. 2008, 10, 1605.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. M. L. Davies, N. J. S. Huby, W. R. Cantrell Jr, J. L. Olive, J. Am. Chem. Soc. 1993, 115, 9468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFyju7k%3D&md5=379ae69fe326b8735c56081ce41751edCAS |

[14]  X. Xu, D. Shabashov, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2012, 14, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWiu7w%3D&md5=2c9a72457d64bb2ef2050e50c3c2f3cbCAS | 22272728PubMed |

[15]  (a) M. A. Calter, C. Zhu, J. Org. Chem. 1999, 64, 1415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1SjtQ%3D%3D&md5=5a8ec2fc0bfc049b0d7c622f653556e2CAS |
      (b) G. Deng, X. Tian, Z. Qu, J. Wang, Angew. Chem. Int. Ed. 2002, 41, 2773.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Liao, S. Dong, G. Deng, J. Wang, Tetrahedron Lett. 2006, 47, 4537.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) Q. Deng, H. Xu, A. W. Yuen, Z. Xu, C. Che, Org. Lett. 2008, 10, 1529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVeitLk%3D&md5=2e16eba333effc3ae5d24f3c185fec6dCAS | 18351765PubMed |
      (b) F. A. Davis, B. Yang, J. Deng, J. Org. Chem. 2003, 68, 5147.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. A. Davis, Y. Wu, H. Xu, J. Zhang, Org. Lett. 2004, 6, 4523.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  X. Xu, M. O. Ratnikov, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2011, 13, 6122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyjsr%2FI&md5=1ec969de5dfa7a6b89546c93a73de75bCAS | 22032199PubMed |

[18]  (a) B. Bernardim, V. D. Pinho, A. C. B. Burtoloso, J. Org. Chem. 2012, 77, 9926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSgs73I&md5=4c2fa3aae19bff86ceff95a92e0a77f6CAS | 23067106PubMed |
      (b) G. Cui, W. Thiel, Angew. Chem. Int. Ed. 2013, 52, 433.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. G. Sudrik, N. K. Chaki, V. B. Chavan, S. P. Chavan, S. P. Chavan, H. R. Sonawane, K. Vijayamohanan, Chem. Eur. J. 2006, 12, 859.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Wang, G. Burdzinski, J. Kubicki, T. L. Gustafson, M. S. Platz, J. Am. Chem. Soc. 2008, 130, 5418.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) D. J. Lee, K. Kim, Y. J. Park, Org. Lett. 2002, 4, 873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFWrtb0%3D&md5=da1db24a62188515369171498e12cbfaCAS | 11893174PubMed |
      (b) D. J. Lee, K. Kim, J. Org. Chem. 2004, 69, 4867.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Navarro Villalobos, J. L. Wood, Tetrahedron Lett. 2009, 50, 6450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GmsLnL&md5=d51cd92d9d13e1ff270389593f5767f8CAS |

[21]  P. Müller, Y. F. Allenbach, S. Grass, Tetrahedron Asymmetry 2005, 16, 2007.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H. M. L. Davies, G. Ahmed, R. L. Calvo, M. R. Churchill, D. G. Churchill, J. Org. Chem. 1998, 63, 2641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit12ltLk%3D&md5=1ab1ec81c72c9893351639c73befbc74CAS |

[23]  J. F. Briones, H. M. L. Davies, Tetrahedron 2011, 67, 4313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOmsLs%3D&md5=8e726807c944560ea0b11cee29436406CAS |

[24]  (a) H. M. L. Davies, J. H. Houser, C. Thornley, J. Org. Chem. 1995, 60, 7529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovF2gt7k%3D&md5=96faae51ada5d756debd1a5e37f4b8e5CAS |
      (b) H. M. L. Davies, G. Ahmed, M. R. Churchill, J. Am. Chem. Soc. 1996, 118, 10774.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  X. Xu, D. Shabashov, P. Y. Zavalij, M. P. Doyle, J. Org. Chem. 2012, 77, 5313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVert7g%3D&md5=1ff8b7cfc68cfa47562d8eb440cd45c0CAS | 22621315PubMed |

[26]  (a) H. M. L. Davies, R. Calvo, G. Ahmed, Tetrahedron Lett. 1997, 38, 1737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVOhu7k%3D&md5=b346d0ae6d30b35880f747e483cc4bf0CAS |
      (b) H. M. L. Davies, R. L. Calvo, R. J. Townsend, P. Ren, M. R. Churchill, J. Org. Chem. 2000, 65, 4261.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Xu, E. J. E. Caro-Diaz, E. A. Theodorakis, Org. Lett. 2010, 12, 3708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVChs7s%3D&md5=4f7dc948175996a9114ff34bb3ac42feCAS | 20669919PubMed |

[28]  H. M. L. Davies, J. J. Matasi, G. Ahmed, J. Org. Chem. 1996, 61, 2305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Cgs70%3D&md5=4cfcae41bc6ea0abcd50e382ad1422feCAS |

[29]  H. M. L. Davies, J. J. Matasi, L. M. Hodges, N. J. S. Huby, C. Thornley, N. Kong, J. H. Houser, J. Org. Chem. 1997, 62, 1095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovVyntg%3D%3D&md5=17b0285dab1d804eeef2d0302629da1eCAS |

[30]  R. P. Reddy, H. M. L. Davies, J. Am. Chem. Soc. 2007, 129, 10312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1entL8%3D&md5=18aa871a8d18b84513d5afc1cd50ddb5CAS | 17685525PubMed |

[31]  X. Wang, X. Xu, P. Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ClsLnL&md5=4b98b9c7083d92e198ddf277926d7021CAS | 21932856PubMed |

[32]  Y. Qian, X. Xu, X. Wang, P. J. Zavalij, W. Hu, M. P. Doyle, Angew. Chem. Int. Ed. 2012, 51, 5900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ers7w%3D&md5=7a47cbdc676e5c21cfeb35e08d55848eCAS |

[33]  X. Xu, P. J. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2012, 51, 9829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yqurfO&md5=d5199ef9abe1fff37d66d56a44620b35CAS |

[34]  J. Barluenga, L. Riesgo, L. A. López, E. Rubio, M. Tomás, Angew. Chem. Int. Ed. 2009, 48, 7569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sru7vJ&md5=f9ee64a023622ed5ef8c0831ca5b0331CAS |

[35]  D. M. Jaber, R. N. Burgin, M. Helper, P. Y. Zavalij, M. P. Doyle, Chem. Commun. 2011, 7623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVGhsLw%3D&md5=1d5a8cc6cee52a1cfc46dc726f41ff73CAS |

[36]  D. M. Jaber, R. N. Burgin, M. Helper, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2012, 14, 1676.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wlu70%3D&md5=c0b3a749bc5d50cd4af899418e05c502CAS | 22409577PubMed |

[37]  (a) H. M. L. Davies, L. M. Hodges, J. Org. Chem. 2002, 67, 5683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltV2mtr4%3D&md5=3e0b369b10bdb7557989994b4c47c993CAS |
      (b) H. M. L. Davies, L. M. Hodges, C. T. Thornley, Tetrahedron Lett. 1998, 39, 2707.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  X. Xu, W. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 11152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yjsrzN&md5=5b830171e2898537079086224c625edcCAS |

[39]  (a) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ksb0%3D&md5=d1947b731b6313b93d7eca47aa0a81adCAS | 11700127PubMed |
      (b) A. E. Russell, J. Brekan, L. Gronenberg, M. P. Doyle, J. Org. Chem. 2004, 69, 5269.
         | Crossref | GoogleScholarGoogle Scholar |