Isolation and Structure of a Hydrogen-bonded 2,2′:6′,2″-Terpyridin-4′-one Acetic Acid Adduct
Pas Florio A , Campbell J. Coghlan A , Chih-Pei Lin A , Kei Saito A , Eva M. Campi A , W. Roy Jackson A and Milton T. W. Hearn A BA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Corresponding author. Email: milton.hearn@monash.edu
Australian Journal of Chemistry 67(4) 651-656 https://doi.org/10.1071/CH13571
Submitted: 21 October 2013 Accepted: 27 November 2013 Published: 6 January 2014
Abstract
Herein, we report the crystal structure of a key intermediate in the synthesis of 4′-substituted-terpyridines. Our findings confirm that the terpyridin-4′-one intermediate as generated from the condensation reaction of the corresponding triketone precursor with ammonium acetate is isolated as a hydrogen-bonded adduct with acetic acid, and not, as previously reported, as the acetate salt of a protonated pyridine nitrogen. This finding provides a rationale for the behaviour and structure of substituted terpyridin-4′-ones and pyridones in both the solid state and in solution.
References
[1] U. S. Schubert, H. Hofmeier, G. R. Newkome, Modern Terpyridine Chemistry 2006 (Wiley-VCH: Weinheim).[2] A. Winter, G. R. Newkome, U. S. Schubert, ChemCatChem. 2011, 3, 1384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmurvN&md5=28c59009aa816d3e8151745e56ed2f49CAS |
[3] J. B. Stimmel, F. C. Kull, Nucl. Med. Biol. 1998, 25, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1yntg%3D%3D&md5=9122911b6f88653d8b43e0d3e4d0f6feCAS | 9468026PubMed |
[4] J. Costa, R. Ruloff, L. Burai, L. Helm, A. E. Merbach, J. Am. Chem. Soc. 2005, 127, 5147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVyqu7o%3D&md5=de8d392a355a9a431d7af32178fbf16aCAS | 15810849PubMed |
[5] I. Eryazici, O. k. Farha, O. C. Compton, C. Stern, J. T. Hupp, S. T. Nguyen, J. Chem. Soc., Dalton Trans. 2011, 9189.
| 1:CAS:528:DC%2BC3MXhtFagtbfE&md5=194c8a78fa9364cd271deded1c905b53CAS |
[6] A. D’Aléo, E. Cecchetto, L. De Cola, R. M. Williams, Sensors 2009, 9, 3604.
| Crossref | GoogleScholarGoogle Scholar | 22412328PubMed |
[7] F. H. Arnold, Nat. Biotechnol. 1991, 9, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlSrs7g%3D&md5=a6c92f9f8e87d48e44a22ddb5d84ef34CAS |
[8] E. C. Constable, M. D. Ward, J. Chem. Soc., Dalton Trans. 1990, 1405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFWnt7Y%3D&md5=0592dc2e9dd1f127c13b823820f29eb8CAS |
[9] R. Lunkwitz, G. Pabst, G. Scherr, US Patent 6 784 296 2004.
[10] J. D. Holbrey, G. J. T. Tiddy, D. W. Bruce, J. Chem. Soc., Dalton Trans. 1995, 1769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFOnsLs%3D&md5=8b37a9031f3da23568a97c59e6b4ac8dCAS |
[11] K. T. Potts, D. Konwar, J. Org. Chem. 1991, 56, 4815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslWgsbc%3D&md5=ff1bfa883f049a1ff1169d9438a97d52CAS |
[12] E. Murguly, T. B. Norsten, N. Branda, J. Chem. Soc., Perkin Trans. 2 1999, 2789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsF2isbs%3D&md5=f4d66bb912a80a583cca68afe4c57de3CAS |
[13] T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. A 2003, 203, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1ans7Y%3D&md5=53ffd3b9c5feec09398b3bd1a1d3276cCAS |
[14] E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Orsb7F&md5=9b6b6bf5ffefccaae5f12b2514067388CAS |
[15] E. Pretsch, J. Seibl, T. Clerc, W. Simon, Tables of Spectral Data for Structure Determination of Organic Compounds 2nd Edn 1989 (Springer-Verlag: Berlin).
[16] T. Fukunaga, S. Kashino, H. Ishida, Acta Crystallogr. 2004, C60, o718.
| 1:CAS:528:DC%2BD2cXotFSgt70%3D&md5=ae2b1f64a3a68a902ef414fcdd319585CAS |
[17] R. A. Fallahpour, M. Neuburger, M. Zehnder, Polyhedron 1999, 18, 2445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlakur8%3D&md5=c3a538864c9dff3eaf56b2416e738457CAS |
[18] R. A. Fallahpour, M. Neuburger, M. Zehnder, New J. Chem. 1999, 23, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVSmsQ%3D%3D&md5=6458e88f31dc70ae3b95094b45702a1dCAS |
[19] P. Beak, Acc. Chem. Res. 1977, 10, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1Wltbo%3D&md5=d736ccfc61b76bb2f02bff38c1c1aa82CAS |
[20] P. G. Jones, Acta Crystallogr. 2001, C57, 880.
| 1:CAS:528:DC%2BD3MXkvFant7c%3D&md5=44f19938c0fb99bf62b73a0c8c54fb7aCAS |
[21] A. Tyl, M. Nowak, J. Kusz, Acta Crystallogr. 2008, C64, 661.
[22] C. Li, P. D. Robinson, J. D. Dyer, Acta Crystallogr. 2006, C62, o336.
| 1:CAS:528:DC%2BD28XlsVKntrk%3D&md5=7f16295555c2a014f1583362623bb11dCAS |
[23] D. Cook, Can. J. Chem. 1963, 41, 515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjslWmug%3D%3D&md5=c0a4990f5d7e68b73120a2896d155b15CAS |
[24] K. Yamaguchi, J. Mass Spectrom. 2003, 38, 473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVKqtr0%3D&md5=9895037c4c15b65c6a95088b8a305f31CAS | 12794868PubMed |
[25] J. H. Clark, M. Green, R. Madden, C. D. Reynolds, Z. Dauter, J. M. Miller, T. Jones, J. Am. Chem. Soc. 1984, 106, 4056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlymtL8%3D&md5=cfa8407f97cee5df5b47e49d3e8f5556CAS |
[26] Bruker Apex2 v2.0 2005 (Bruker AXS: Madison, WI).
[27] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.